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Probabilistic Amplitude Shaping
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e PAS encoding: systematic linear FEC encoder preserves amplitude
distribution imposed by DM.
e PAS decoding: linear FEC decoder on full linear code, agnostic of DM.

This talk focuses on theoretic aspects of PAS



Probabilistic Amplitude Shaping
Theoretical advances

[1] PAS [3] Minimum cost DM [4] Error exponent
of PAS decoding
[2] CCDM
————rT el
2015 2016 2019 2022 2023

[1] G. Bocherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density
parity-check coded modulation,” /EEE Trans. Commun., vol. 63, no. 12, pp. 4651-4665, Dec. 2015

[2] P. Schulte and G. Bocherer, “Constant composition distribution matching,” /EEE Trans. Inf.
Theory, vol. 62, no. 1, pp. 430-434, Jan. 2016

[3] P. Schulte and F. Steiner, “Divergence-optimal fixed-to-fixed length distribution matching with
shell mapping,” I[EEE Wireless Commun. Letters, vol. 8, no. 2, pp. 620-623, Apr. 2019

[4] N. Merhav and G. Bécherer, “Codebook mismatch can be fully compensated by mismatched
decoding,” IEEE Trans. Inf. Theory, vol. 69, no. 4, pp. 2152-2164, Apr. 2023



Probabilistic Amplitude Shaping

https://qithub.com/gbsha/PAS

Foundations and Trends® in
Communications and Information Theory

20:4

Probabilistic Amplitude
Shaping

Georg Bocherer



https://github.com/gbsha/PAS

Outline

Probabilistic Amplitude Shaping
An Optimization Problem

An Information Theoretic Problem
A Machine Learning Problem



Setup

» 2M_ASK constellation

» AWGN channel

» Signal-to-noise ratio

» FEC rate

X € {#1,43,...,+(2™ - 1)}

Y=X+0Z, Z~N(0,1)
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PAS Achievable Rate

» Maxwell-Boltzmann (MB) distribution
Px(x) o< exp(—v|x|?)
» Spectral efficiency

SE = H(X) — m(1 — Reec)

» By [5, Example 5.5], an achievable noise level is

0: ]H[(X'X I UZ) = m(l == Rfec)



spectral efficiency [bpcul

PAS Achievable Rate

Killer application in optical
communications:
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[5, Sec. 1.4.5]

What if we want to optimize Px?

maximize H(X)
Px
subjectto H(X|Y) < m(1 — Rfec)
The Lagrangian is

L(Px,\) = H(X) — AH(X|Y)

» For A\=1: L(Px,\) =1(X;Y) = convex N in Px.
» For large enough A > 1, L(Px, \) becomes non-convex

Problem 1: Find algorithm to calculate optimal Py




Remarks on Problem 1

» The solution may assign probability 0 to some signal points.

» Enhancing the peak power constrained problem in [6] by a constraint on the
equivocation may be a viable approach.

[6] J. G. Smith, “The information capacity of amplitude-and variance-constrained scalar Gaussian
channels,” Inf. control, vol. 18, no. 3, pp. 203-219, 1971
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Distribution Matching [5, Chapter 2! ————
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Remark: The CCDM distribution (“type”) is chosen in [5] according to the minimum cost for which the required rate is achieved. This results in lower cost than starting from
an MB distribution and quantizing it to an n-type. The minimum cost DM (MCDM) indexes the 2”k least cost length n sequences. Thus, both for CCDM and MCDM, the
distribution (averaged both over the sequences and the entries of the sequences) has only a subordinate role. Further, in practice, the cost penalty has proven to be a
more relevant metric for DM comparison than rate loss or relative entropy, for two reasons: (1) the MB distribution itself results from minimizing cost; so directly minimizing
cost is more meaningful than approximating an MB distribution. (2) rate is a system parameter, which usually has to be realized exactly.

cost penalty = 10log;,



PAS Channel Coding Theorem
» By [5, Theorem 5.3], asymptotically in FEC length n, PAS can achieve

SEF= Rccdm(P|X|a ndm) +1— ]H[(XlY)
with sign(X) uniform on {—1,1}.
» For ngm — o0,

SE* = H(X) — H(X|Y)

which is the best we can do.

» However, for short DM length, we know empirically that MCDM is much better
than CCDM. Example: 800G: FEC decoding window > 100000, ng,, = 12.

Problem 2: Prove PAS channel coding theorem for MCDM




Comments on Problem 2

» [4] proves that PAS decoding of linear codes achieves the best known error
exponent for constant composition codes [7, Theorem 10.2].

» [8] proves a PAS channel coding theorem where the DM is replaced by a discrete
memoryless source.

[4] N. Merhav and G. Bocherer, “Codebook mismatch can be fully compensated by mismatched
decoding,” IEEE Trans. Inf. Theory, vol. 69, no. 4, pp. 2152-2164, Apr. 2023

[7] I. Csiszar and J. Korner, Information Theory: Coding Theorems for Discrete Memoryless
Systems. Cambridge University Press, 2011

[8] R. A. Amjad, “Information rates and error exponents for probabilistic amplitude shaping,” in
Proc. IEEE Inf. Theory Workshop (ITW), Guangzhou, China, Nov. 2018
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Data Driven (“Machine Learning”) Geometric Shaping

» Geometric shaping is the vanilla case of data driven transmitter optimization.
» Loss function: crossequivocation (“crossentropy”) E[—log, Q(X|Y)] > H(X]Y).
» Differential channel simulator.

» Backpropagate loss gradient to alphabet.

Source ~  Mapper »  Channel = Demapper > Loss

alphabet



Data Driven Probabilistic Shaping

» Loss function: crossequivocation is minimized by Dirac delta Px
= regularize, e.g., by H(X).
» How to define a differentiable estimator of H(X)?

» How to define a differentiable source?

Problem 3: Data driven optimization of input distribution Px




Remarks on Problem 3

» For differential entropy, a differentiable estimator exists [9].
= estimate density in x; by distance to closest neighbor.

» | use it in [10, Chapter 10] for stochastic channel modelling.
» There may be no solution, but why?

[9] J. Jiao, W. Gao, and Y. Han, “The nearest neighbor information estimator is adaptively near
minimax rate-optimal,” in Proceedings of the 32nd International Conference on Neural Information
Processing Systems, 2018, pp. 3160-3171

[10] G. Bocherer, Lecture notes on machine learning for communications, |Online|. Available:
http://georg-boecherer.de/mlcomm



Summary

Practical PAS is well understood, theoretical understanding is still incomplete.
We lack

e Algorithm for optimizing input distribution under constrained FEC overhead.
e Channel coding theorem for minimum cost DM (optimal DM?)
e Better understanding difficulty of data-driven input distribution optimization.
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