

Probabilistic Constellation Shaping Algorithms: Performance vs. Complexity Trade-offs

Yunus Can Gültekin

Information and Communication Theory (ICT) Lab Technische Universiteit Eindhoven (TU/e), The Netherlands

April 4, 2024 München Workshop on Shannon Coding Techniques (MSCT) @Technische Universität München

Where innovation starts

What is This Presentation About?

Shaping

- Probabilistic shaping
 - Sphere shaping
 - Enumerative sphere shaping (ESS)
 - Applied to the AWGN and NL fiber-optic channels
 - With complexity concerns
 - With an attempt at FPGA implementation

Motivation: The Shaping Gap

Achieving the Capacity of the AWGN Channel

Probabilistic Amplitude Shaping (PAS)

[1] Böcherer et al., "Bandwidth Efficient and Rate-Matched LDPC Coded Modulation," IEEE Trans. Commun., 2015.

[2] R. Laroia et al., "On optimal shaping of multidimensional constellations," IEEE Trans. Inf. Theory, 1994.

- [3] P. Schulte et al., "Divergence-Optimal Fixed-to-Fixed Length DM with SM," IEEE Wireless Commun. Lett., 2019.
- [4] F. Willems et al., "A pragmatic approach to shaped coded modulation," Symp. Commun. Veh. Technol. in the Benelux, 1993.
- [5] Y.C. Gültekin et al., "ESS for Wireless Communications with Short Packets," IEEE Trans. Wireless Commun., 2020.

Enumerative Sphere Shaping

N = 3, $\mathcal{A} = \{1, 3, 5\}$, $E_{\max} = 27$

	e		e		e	
(1, 1, 1)) 3	(1, 3, 3)	19	$({\bf 3},{\bf 3},{f 1})$	19	
(1, 1, 3) 11	(1, 5, 1)	27	$({\bf 3},{\bf 3},{\bf 3})$	27	
(1,1,5) 27	(3, 1, 1)	11	(5,1,1)	27	
(1, 3, 1) 11	(3, 1, 3)	19			
ESS requ $m{T}=$	ires $-$ $\begin{bmatrix} 0\\0\\0\\11 \end{bmatrix}$	$\begin{array}{c} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 4 & 2 & 1 \\ 6 & 3 & 1 \end{array}$	storag $oldsymbol{F}$:	ge of T $= \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$	$egin{array}{cccc} 1 & 2 \ 0 & 1 \ 1 & 2 \ 1 & 1 \ \end{array}$	4

SM requires \times, \div , and $\log N$ columns of \boldsymbol{F}

Sphere Shaping (2/3)

• 64-QAM, 4 bit/2D, 648-bit Wi-Fi LDPC codes (N = 216), AWGN channel

Problem: Too complex!

Sphere Shaping (3/3)

• 64-QAM, 4 bit/2D, 648-bit Wi-Fi LDPC codes (N = 216), AWGN channel

Solution: Bounded-precision implementation to limit the required storage [6].

[6] Y.C. Gültekin et al., "Approximate Enumerative Sphere Shaping," ISIT, 2018.

What About Nonlinear Fiber-optic Channels?

Optical Channels & Nonlinear Interference

Can be modeled as a time-varying ISI channel:

- All past and future symbols create NL interference [7], [8].
- Variations in the energy of the TX signal generate nonlinear distortion [9].

Solution: Modified sphere shaping to decrease energy variations.

[7] M. Secondini et al., "AIR in NL WDM Fiber-Optic Systems w/ Arbitrary Mod and Dispersion Maps," JLT, 2013.

- [8] R. Dar et al., "Inter-Channel NLIN in WDM Systems: Modeling and Mitigation," JLT, 2015.
- 9] O. Geller et al., "A Shaping Algorithm for Mitigating Inter-Channel NLPN in NL Fiber Systems," JLT, 2016.

Band-trellis ESS (B-ESS) [10] (1/2)

Removing sequences w/ high energy variations: Band-trellis

[10] Y.C. Gültekin et al., "Mitigating Nonlinear Interference by Limiting Energy Variations in Sphere Shaping," OFC, 2022.

Band-trellis ESS (B-ESS) (2/2)

Narrow-band B-ESS \rightarrow Good for nonlinear fiber-optic channels!

Shift-based B-ESS [11] (1/2)

$$T = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 11 & 7 & 4 & 2 & 1 \\ 0 & 0 & 28 & 17 & 10 & 5 & 2 & 0 \\ 0 & 71 & 43 & 26 & 12 & 4 & 0 & 0 \\ 0 & 154 & 62 & 18 & 0 & 0 & 0 & 0 \\ 374 & 149 & 44 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$t_n = At_{n+1} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} t_{n+1}$$

$$t_n \approx \rho(A)t_{n+1} \text{ (for N large enough)}$$

$$T = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

[11] Y.C. Gültekin et al., "Band-ESS: Streaming Enumerative Coding with Applications to Prob. Shaping," GLOBECOM, 2022.

Shift-based B-ESS (2/2)

Narrow-band B-ESS \rightarrow Good for nonlinear fiber-optic channels!

FPGA Implementation

	Technique	FPGA	f_{CLK}	Thr.	Thr./Area	LUT	Reg.
		(Xilinx)	(MHz)	(Mbps)	(Kbps/LUT)	#	#
۵	HiDM [12]	XCVU9P	240	2260	1.91	1182k	2364k
atur	PCDM [13]	XCKU040	146	1680	124	13.6k	3.5k
itera	HiDM [14]	XCVU125	100	3200	586	5.5k	4.9k
Γ	ESS [15]	XCVU125	100	1600	18.9	95k	140k
	BP BS-B-ESS [16]	XCZU5CG	770	1540	50.2	4.4k	1.5k

[†]Some values are deduced from limited information provided in the referenced papers.

- [12] T. Yoshida et al., "Compressed shaping: concept and FPGA demonstration," JLT, 2021.
- [13] Q. Yu et al., "FPGA implementation of rate-adaptable prefix-free code DM for PCS," JLT, 2021.
- [14] L. Zhang et al., "Real-time FPGA investigation of interplay between PS and FEC," JLT, 2022.
- [15] L. Zhang et al., "FPGA investigation of ESS for PS 64QAM," CLEO, 2022.
- [16] Y.C. Gültekin et al., "Band-ESS: Streaming enumerative coding with applications to PS," GLOBECOM, 2022.

Discussion

Take-home Messages

- 1 **Probabilistic shaping** increases achievable rates for both the AWGN channel and nonlinear fiber-optic channels.
- 2 Improved performance can be obtained via different techniques, creating a trade-off between **performance**, storage complexity, and computational complexity.
- 3 Recently introduced **binary-shift-based B-ESS** provides improved performance with very small storage and computational complexity.

Advertisement Time

2024 European School of Information Theory (ESIT)

July 1-5, 2024, Eindhoven, The Netherlands

Confirmed tutorial speakers (dates tentative):

- Tutorial 1: Prof. Prakash Narayan, University of Maryland, USA
- Tutorial 2: Prof. Osvaldo Simeone, King's College, UK
- Tutorial 3: Prof. Muriel Medard, Massachusetts Institute of Technology, USA, and Prof. Ken Duffy
- Tutorial 4: Prof. Albert Guillén i Fàbregas, University of Cambridge, UK

Confirmed seminar speakers (dates tentative):

- Seminar 1: Prof. Marco Secondini, Sant'Anna School of Advanced Studies, Italy
- Seminar 2: Prof. Mario Berta, RWTH Aachen University, Germany
- Seminar 3: Prof. Laurent Schmalen, Karlsruhe Institute of Technology, Germany
- Seminar 4: Prof. Si-Hyeon Lee, Korea Advanced Institute of Science & Technology, South Korea

Confirmed high-tech industry speakers:

- Dr. Roel Maes, TU/e and Intrinsic ID, the Netherlands
- Prof. Andreas Burg, École Polytechnique Fédérale de Lausanne, Switzerland
- Dr. Gianluigi Liva, Deutsches Zentrum für Luft- und Raumfahrt, Germany*

Probabilistic Constellation Shaping Algorithms: Performance vs. Complexity Trade-offs

Yunus Can Gültekin

Information and Communication Theory (ICT) Lab Technische Universiteit Eindhoven (TU/e), The Netherlands

April 4, 2024 München Workshop on Shannon Coding Techniques (MSCT) @Technische Universität München

Where innovation starts

Band-trellis ESS (B-ESS) (AWGN) (1/2)

Wide-band B-ESS \approx ESS \rightarrow Good for the AWGN channel!

Band-trellis ESS (B-ESS) (AWGN) (2/2) (Shift-based)

Wide-band B-ESS \approx ESS \rightarrow Good for the AWGN channel!

SSMF via SSFM: Setup	Parameter	Value	
•	# Channels	1	
	Attenuation	0.2 dB/km	
	Dispersion	17 ps/nm/km	
	Distance	1-span, 205 km	
	NL	1.3 1/W/km	
	EDFA NF	5 dB	
	Polarization	Dual	
	Symbol rate	50 GBd	
	RRC roll-off	0.1	
	Constellation	64-QAM	
	Raw data rate	600 Gbps	
	TX rate	4 bit/2D	
	Code rate	2/3 (U), 5/6 (PS)	
	PS rate	1.5 bit/amp.	
	$PS\ N$	108	
	Net data rate	400 Gbps	
15/15	FEC	648-bit 802.11 LDPC	