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Outline

Outline

∗ I-MMSE scalar and vector relations.

∗ Good and ’bad’ codes.

∗ Information versus MMSE disturbance.

∗ Degrees-of-Freedom: an MMSE dimension perspective.

∗ Outlook.
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I-MMSE Scalar Setting

I-MMSE

The I-MMSE relation [Guo-Shamai-Verdú, IT’05].

Y =
√

snr X + N

X – Input signal, Y – Output signal, N – Gaussian noise ∼ N (0, 1),
snr – Signal-to-Noise Ratio.

d

dsnr
I (X ;Y ) =

1

2
mmse(X : snr)

mmse(X |Y ) = mmse(X : snr) = mmse(snr) = E
(
X − E

(
X |Y

))2
.

Shlomo Shamai (Shitz) (Technion) MSCT 2024 3 / 34



I-MMSE Scalar Examples

I-MMSE - examples

I-MMSE: Gaussian Example: X ∼ N (0, 1).

mmse(X : snr) = E
(
X −

√
snr

1+snr Y
)2

= 1
1+snr ,

I (X ;Y ) = Ig (snr) = 1
2 log(1 + snr).

I-MMSE: Binary Example: X = ±1, symmetric.

mmse(X : snr) = 1−
∞∫
−∞

e−y2/2

√
2π

tanh(snr −
√

snr y) dy

I (X ;Y ) = Ib(snr) = snr −
∞∫
−∞

e−y2/2

√
2π

log cosh(snr −
√

snr y) dy
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I-MMSE Scalar Examples

d

dsnr
I (X ;Y ) =

1

2
mmse(X : snr)
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I-MMSE The Vector Relation

Vector Channel

Theorem (Guo-Shamai-Verdú, IT’05)

Let Y =
√

snr HX + N .

If E‖X‖2 <∞, X ,Y , N ∼ N (0, I ) vectors

d

dsnr
I (X ;

√
snr HX + N) =

1

2
mmse(HX |

√
snr HX + N)

=
1

2
mmse(snr) =

1

2
E ‖H X −H E{X |Y }‖2

=
1

2
Tr(HEX (snr)HT)

where EX (snr) is the MMSE matrix of estimating X from Y .
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I-MMSE Gaussian Vector Example

Special Case: MIMO channel with Gaussian Inputs

Y =
√

snr ·H X + N

X – iid standard Gaussian

I (X ; Y ) =
1

2
logdet

(
I + snrHTH

)
Error covariance matrix:

E

{(
X − X̂

)(
X − X̂

)T
}

=
(
I + snrHTH

)−1

mmse(snr) = E

{∥∥∥HX −HX̂
∥∥∥2
}
,

= Tr
{(

I + snrHTH
)−1

HTH
}
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I-MMSE Gaussian Vector Example

Some Abbreviations

γ - designates signal-to-noise ratio.
n - length of the input/output vectors.

In(γ) =
1

n
I (X ; Y (γ))

I (γ) = lim
n→∞

1

n
I (X ; Y (γ))

MMSEcn(γ) =
1

n
Tr(EX (γ))

MMSEc(γ) = lim
n→∞

MMSEcn(γ)
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I-MMSE The Single Crossing Point Property

The Single Crossing Point Property

Theorem (Guo-Wu-Shamai-Verdú, IT’11)

f (γ) , (1 + γ)−1 −mmse(X : γ)

If X is not standard Gaussian, f has at most one zero (Var (X ) > 1).
If f (snr0) = 0, then

1 f (0) ≤ 0;

2 f (γ) is strictly increasing on γ ∈ [0, snr0];

3 f (γ) > 0 for every γ ∈ (snr0,∞); and

4 lim
γ→∞

f (γ) = 0.
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I-MMSE The Single Crossing Point Property

The Single Crossing Point Property - Extension

Several MIMO extensions are given in [Bustin, Payaró, Palomar and Shamai,
IT’13]. We give here only the simplest extension.

Theorem (Bustin, Payaró, Palomar and Shamai, IT’13)

The function

q(X , σ2, γ) =
σ2

1 + γσ2
− 1

n
Tr(EX (γ))

has no nonnegative-to-negative zero crossings and, at most, a single
negative-to-nonnegative zero crossing in the range γ ∈ [0,∞). Moreover, assume
snr0 ∈ [0,∞) is a negative-to-nonnegative crossing point. Then,

q(X , σ2, 0) ≤ 0.

q(X , σ2, γ) is a strictly increasing function in the range γ ∈ [0, snr0).

q(X , σ2, γ) ≥ 0 for all γ ∈ [snr0,∞).

limγ→∞ q(X , σ2, γ) = 0.
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Application to Codes Basic Concepts

Optimal Point-to-Point Codes

Looking at code-sequences over the scalar Gaussian channel.

Theorem (Peleg, Sanderovich and Shamai, ETT’07)

For every capacity achieving code-sequence, Cn, over the Gaussian
channel, the mutual information, when n→∞, is as follows:

I (γ) = lim
n→∞

1

n
I (X ;

√
γX + N) =

{
1
2 log(1 + γ), γ ≤ snr

1
2 log(1 + snr), o/w

and the MMSE is:

MMSEc(γ) =

{ 1
1+γ , γ ≤ snr

0, o/w
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Application to Codes Basic Concepts

Optimal Point-to-Point Codes - Cont.

⇒ The mutual information (and MMSE) of optimal point-to-point codes follow the
behavior of an i.i.d. Gaussian input up to snr.
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⇒ Area under curve = R ⇒ Good code must exhibit a threshold (phase transition).
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Application to Codes Multiterminal Systems

What is the effect on an unintended receiver?

X Y

Z

R

?

Assumption: the unintended receiver, Z , has smaller snr, that is, snrz < snry .
How should we measure the effect (disturbance)?
For optimal point-to-point codes both the mutual information and MMSE are
completely known.
But what about non-optimal code (that do not attain capacity)?
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Application to Codes ‘Bad’ Codes & The Interference Channel

‘Bad’ Codes & The Interference Channel

∗ ‘Bad’ Codes: Trade rate versus MMSE (interference) in lower snr
(R > capacity) [Bennatan-Shamai-Calderbank, IT-S’11]

∗ Interference channels:

- Interfering codeword not decodable
- Interference Networks with Point-to-Point Codes

[Baccelli-El Gamal-Tse, ISIT’11]
⇒ Soft partial interference cancellation
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Application to Codes ‘Bad’ Codes – Multiterminal Systems

‘Bad’ Codes – Multiterminal Systems: MMSE Bounds

∗ I-MMSE Application: deterministic finite length codes

- MI-Bound: I-MMSE invoking properties in [Wiechman-Sason, IT’07]

- BP-Bound: based on tools in [Richardson-Urbanke, IT’01]

Shlomo Shamai (Shitz) (Technion) MSCT 2024 15 / 34



MMSE Vs. Information Problem Definition - Single MMSE Constraint

Problem Definition - Single MMSE Constraint

Assuming snr1 < snr2 and MMSEc(snr1) is limited to some value.
What is the maximum possible rate at snr2?
In other words:

max I (snr2)

s.t. MMSEc(snr1) ≤ β

1 + βsnr1

for some β ∈ [0, 1].
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MMSE Vs. Information Superposition Codes

Superposition codes

The mutual information, I (γ), and MMSEc(γ) of an optimal Gaussian superposition
code are known exactly, for all γ.

Theorem (Merhav, Guo and Shamai, IT’10)

A superposition codebook designed for (snr1, snr2) with the rate-splitting coefficient
β < 1 has the following mutual information:

I (γ) =


1
2
log (1 + γ) , if 0 ≤ γ < snr1

1
2
log
(

1+snr1
1+βsnr1

)
+ 1

2
log (1 + βγ) , if snr1 ≤ γ ≤ snr2

1
2
log
(

1+snr1
1+βsnr1

)
+ 1

2
log (1 + βsnr2) , if snr2 < γ

and the following MMSEc(γ):

MMSEc(γ) =


1

1+γ
, 0 ≤ γ < snr1

β
1+βγ

, snr1 ≤ γ ≤ snr2

0, snr2 < γ
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MMSE Vs. Information Superposition Codes

Superposition codes - Example
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MMSE Vs. Information Solution - Single MMSE Constraint

Solution - Single MMSE Constraint

Theorem (Bustin and Shamai, IT’13)

Assuming snr1 < snr2 the solution of the following optimization problem,

max I (snr2)

s.t. MMSEc(snr1) ≤ β

1 + βsnr1

for some β ∈ [0, 1], is the following

I (snr2) =
1

2
log (1 + βsnr2) +

1

2
log

(
1 + snr1

1 + βsnr1

)
and is attainable when using the optimal Gaussian superposition codebook
designed for (snr1, snr2) with a rate-splitting coefficient β.
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MMSE Vs. Information Solution - Single MMSE Constraint

The Effect at Other snrs

Theorem (Bustin and Shamai, IT’13)

From the set of reliable codes of rate

Rc =
1

2
log (1 + βsnr2) +

1

2
log

(
1 + snr1

1 + βsnr1

)
complying with the MMSE constraint at snr1:

MMSEc(snr1) ≤ β

1 + βsnr1

the superposition codebook provides the minimum MMSE for all snrs.
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MMSE Vs. Information K MMSE Constraints

Extension to K MMSE Constraints

Theorem (Bustin and Shamai, IT’13)

Assuming snr0 < snr1 < . . . < snrK the solution of,

max I (snrK )

s.t. MMSEc(snri ) ≤
βi

1 + βi snri
, ∀i ∈ {0, 1, . . . ,K − 1}

for some positive βi , i ∈ {0, 1, . . . ,K − 1} such that
∑K−1

i=0 βi ≤ 1 and
βK−1 < βK−2 < . . . < β1 < β0 is the following

I (snrK ) =
1

2
log

(
1 + snr0

1 + β0snr0

K−1∏
j=1

1 + βj−1snrj
1 + βjsnrj

)
+

1

2
log (1 + βK−1snrK )

and is attainable when using the optimal K-layers Gaussian superposition codebook
designed for (snr0, snr1, . . . , snrK ) with power-splitting coefficients (β0, . . . , βK−1).
Additional constraints of the following form: MMSEc(snr`) ≤ β`

1+β`snr`
for

snri−1 ≤ snr` ≤ snri , when β` ≥ βi−1, do not affect the above result.
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MMSE Vs. Information K MMSE Constraints

K -layer Superposition Code, K = 3
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MMSE Vs. Information Coding Interpretation

Coding Interpretation

∗ Using MMSE as a disturbance measure, and the resultant optimality of
superposition coding, provides an intuitive engineering support for
Han-Kobayashi coding strategies over the Gaussian Interference Channel.

∗ Can an I-MMSE methodology be used to prove the capacity region corner
points (Proved Costa’s conjecture): Statement: [Sason, Allerton’13],
Attempt: [Bustin, Poor, Shamai, ’15], Different Proof: [Wasserstein distance
based, Polyanskiy, Wo, ISIT’16].

∗ While [Han-Kobayashi, IT’81] is known to be good over the two users
Gaussian interference channel [Etkin-Tse-Wang, IT’08] (capacity within 1
bit), and can not be improved by ML decoders (with random coding)
[Bandemer-El Gamal-Kim, arXiv’12], this is not the case for many users
Gaussian interference channel.

For example: Gaussian superposition coding yields DoF=1, immaterial of
the number of users for a fully connected Gaussian interference channel.

∗ Can an I-MMSE perspective be useful, for many users Gaussian interference
channels ?
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Interference Alignment Basic DoF Concepts

Basic DoF Concepts: Information/MMSE Dimension

∗ Information dimension [Renyi, Acta-Math. Hung’59], [Wu-Verdú, IT’10]

X -real valued random variable:

d(X ) = lim
m→∞

H(〈X 〉m)

logm
, 〈X 〉m ,

bmXc
m

- d(X ) <∞⇐= Elog(1 + |X |) <∞
- vector generalizations

∗ MMSE dimension [Wu-Verdú, IT’11]

Y =
√

snrX + N ,

D(X ) = lim snr
snr→∞

mmse(X : snr) , mmse = D(X )
snr

+ o
(

1
snr

)
- d(X ) = D(X ) for X ∼ discrete, continuous, mixture

- lim
snr→∞

I (X , snr)
1
2

logsnr
= d(X ) , d(X ) <∞, I (X , snr) , I (X ;Y )
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Interference Alignment Interference Channel

Interference Channel

Yi =
K∑
j=1

√
snrhijXj + Ni , H = {hij} , (i , j) = 1 , . . . K

{Xi} independent users’ signals,E(X 2
i ) ≤ 1, Ni ∈ N (0, 1) ,

C(H, snr) - capacity region

C(H, snr) ,

{
K∑
i=1

Ri , R
K ∈ C(H, snr)

}
sum rate capacity

DoF(H) = lim
snr→∞

C(H, snr)
1
2

logsnr
= sum DoF

D(H) = DoF - region

Central results: [Host-Madsen-Nosratinia, ISIT’05], [Cadambe-Jafar, IT’08],
[Etkin-Ordentlich, IT’09], [Motahari-Gharan-Maddah Ali-Khandani, IT’11],
Tutorial-[Jafar, FnT’11]

⇒ Unlike previously believed DoF(H) “almost surely for all H” is K/2 and not 1!

- central tool: number theoretic – ‘Diophantine Approximation Theory’
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Interference Alignment Approach MMSE – Dimension

An Information/MMSE Dimension Approach

[Wu-Shamai-Verdú, ISIT’11]:
Non Single Letter Capacity Region [Ahlswede, ISIT’71] ⇒

C (H, snr) = lim
n→∞

1

n
sup

P(xn1 ,... x
n
K )

K∑
i=1

I (X n
i ;Y n

i )

C(H, snr) = lim
n→∞

sup
P(xn1 ,... x

n
K )

{
Ri ≤ I (X n

i ;Y n
i ), i = 1, 2 . . .K

}
⇒I (X n

i ;Y n
i ) = I (X n

1 ,X
n
2 . . . X n

K ;Y n
i )− I (X n

1 , . . . , X
n
K ;Y n

i |X n
i )

⇒single-letterized expressions!

dof (X (K) : H) ,
K∑
i=1

d

 K∑
j=1

hijXj

− d

 K∑
j 6=i

hijXj


DoF (H) = sup

P(X (K))

dof (X (K) : H)
(independent X1X2...XK )
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Interference Alignment Approach MMSE – Dimension

Information/MMSE Dimension-Results

- DoF (H) is invariant under row or column scaling

- Removing cross-links does not decrease DoF

- Suboptimality of discrete-continuous mixtures!

⇒ to get DoF > 1, necessary to emply singular components ∼
MMSE dimension oscillates periodically in snr (dB) around information
dimension

- If off-diagonal entries H are rational and diagonal entries irrational
⇒ DoF (H) = K/2 (no need for irrational algebraic numbers
[Etkin-Ordentlich, IT’09])

- Example: H =

1 0 0
1 2 0
1 1 1

, DoF(H) ≥ 1 + log6
1+
√

5
2 > 2+log23

6

[Etkin-Ordentlich, IT’09].

- DoF Region: D(H) ⊂ co{e1, . . . eK ,
1
2 I}, fully connected H
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Outlook Finite n MMSE Constraint

Outlook: Finite n MMSE Constraint

∗ Assume 0 < snr1 < snr2.

max In(snr2)

s.t. MMSEcn(snr1) ≤ β

1 + βsnr1

where the maximization is over P(X ), X - length n random vector
complying with the power constraint.

∗ Conjecture for n = 1: For β < 1 discrete optimizing measure P(x).
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Outlook The Mutual Information Disturbance Measure

Mutual information disturbance: single constraint

Bandemer and El Gamal, 2011, measure the disturbance at the unintended receiver
using the mutual information at Z . That is, assuming this mutual information is at most
Rd what is the maximum possible rate to the intended receiver, Y .

Theorem (Bandemer and El Gamal, ISIT’11)

Assuming snr1 < snr2 the solution of the following optimization problem,

max In(snr2)

s.t. In(snr1) ≤ 1

2
log (1 + α?snr1)

for some α? ∈ [0, 1], is the following

In(snr2) =
1

2
log (1 + α?snr2) .

Equality is attained, for any n, by choosing X Gaussian with i.i.d. components of
variance α?. For n→∞ equality is also attained by a Gaussian codebook designed for
snr2 with limited power of α?.
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Outlook The Mutual Information Disturbance Measure

Simple I-MMSE proof

∗ Since, 0 ≤ In(snr1) ≤ 1
2 log (1 + snr1) there exists an α? ∈ [0, 1] such that

In(snr1) =
1

n
log (1 + α?snr1) .

=⇒ MMSEcn (γ) and mmseG (γ) of XG ∼ N (0, α?) cross in [0, snr1].

∗ Using the I-MMSE

In(snr2) =
1

2
log (1 + α∗snr1) +

1

2

∫ snr2

snr1

MMSEcn (γ)dγ

≤ 1

2
log (1 + α∗snr2)

due to the “single crossing point” property which ensures

MMSEcn (γ) ≤ mmseG (γ), ∀γ ∈ [snr1,∞)

Shlomo Shamai (Shitz) (Technion) MSCT 2024 30 / 34



Outlook The Mutual Information Disturbance Measure

K Mutual Information Constraints

Theorem

Assuming snr1 < snr2 < . . . < snrK the solution of

max In(snrK )

s.t. ∀i ∈ {1, . . . ,K − 1}, In(snri ) ≤
1

2
log (1 + αi snri )

for some αi ∈ [0, 1], is the following

In(snrK ) =
1

2
log (1 + α`snrK )

where α`, ` ∈ {1, . . . ,K − 1}, is defined such that

∀i ∈ {1, . . . ,K − 1} 1

2
log (1 + α`snri ) ≤

1

2
log (1 + αi snri )

The maximum rate is attained, for any n, by choosing X Gaussian with i.i.d.
components of variance α`. For n→∞ equality is also attained by a Gaussian
codebook designed for snrK with limited power of α`.
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Outlook Gaussian MIMO Channels

Gaussian MIMO Channels

∗ Measuring disturbance by MMSE provides some “engineering”
insights into the relative efficiency of rate splitting (Han-Kobayashi)
for simple scalar Gaussian interference channels. This is not the case,
when disturbance is measured by mutual information.

∗ Bandemer and El Gamal have extended their solution to the Gaussian
MIMO channel under a mutual information constraint
<arXiv:1103.0996v2>, and this solution implies rate-splitting.
Challenge: extend the equivalent MMSE constraint to the Gaussian
MIMO setting. Can I-MMSE considerations reflect the best
achievable performance in all snr regimes? DoF via information
(MMSE) dimensions for the vector channel [Stotz-Bölcskei, 2012].

∗ Challenge: Optimal rate-MMSE disturbance constraints, tradeoffs for
single codes (not allowing rate splitting) and practical implications
(belief propagation soft decoding for LDPC codes).
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Outlook Gaussian MIMO Channels

Thank You!
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Abstract

Shlomo Shamai, Dept. EE, Technion.
Munich Workshop on Shannon Coding Techniques (MSCT April 2024)

‘‘Coding over Interference Channels: An Information-Estimation View”

The information-estimation relation is used to gain insight into useful coding schemes oper-
ating over the Gaussian interference channel.
After reviewing basic I-MMSE relations and their implications on point-to-point coding over
the Gaussian channel, we focus on the Gaussian interference channel. Here the inflicted
interference is measured by the associated minimum mean square error (MMSE). Structure
of codes achieving reliable communication at some specific signal-to-noise ratio (SNR) and
constrained by the permitted MMSE at a lower SNR values, modeling the interference, are
discussed. It is shown that layered superposition codes attain optimal performance, providing
thus some engineering insight to the relative efficiency of the Han-Kobayashi coding strategy.
The Degrees-of-Freedom (DoF) behavior of the multi-user Gaussian interference channel is
captured by considering the MMSE-Dimension concept, providing a general expression for the
DoF. A short outlook concludes the presentation, addressing related research challenges, and
also recent results, where interference is measured by the corresponding mutual information.

Joint work with R. Bustin, General Motors and A. Dytso, QUALCOMM.

A. Dytso, R. Bustin, D. Tuninetti, N. Devroye, H.V. Poor and S. Shamai (Shitz), “On Communications through
a Gaussian Noise Channel with an MMSE Disturbance Constraint,” IEEE Trans. Information Theory, vol. 64,
no. 1, pp. 513–530, January 2017.
A. Dytso, R. Bustin, H.V. Poor and Shlomo S. (Shitz), “A View of Information-Estimation Relations in
Gaussian Networks,” Entropy, August 2017.
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