

Soft-aided Decoding of Product Codes for Optical Communications

Laurent Schmalen, Sisi Miao, Lukas Rapp

Overview

Motivation

Iterative Bounded Distance Decoding of PCs

Decoder with Dynamic Reliability Scores

List-Based Decoder with Dynamic Reliability Scores

Motivation

Product codes (PCs) [Eli55] are powerful code construction for high speed optical communication systems
 Conventional decoding of PCs

Soft-decision decoding (SDD)

e.g.: turbo product decoding (TPD) [Pyn98]

- ✓ large decoding gain
- X high complexity
- X high internal decoder data flow

Hard-decision decoding (HDD)

e.g.: iterative bounded distance decoding (iBDD)

- X small decoding gain
- ✓ low complexity
- Iow internal decoder data flow

- [Eli55] P. Elias, "Coding for noisy channels," in IRE Convention Record, Part IV, Mar. 1955.
- [Pyn98] R. M. Pyndiah, "Near-optimum decoding of product codes: Block turbo codes, "IEEE Trans. Commun., vol. 46, no. 8, 1998.
- [LSA19] G. Liga, A. Sheikh, and A. Alvarado, "A novel soft-aided bit-marking decoder for product codes," in *Proc. ECOC.* 2019.
- [SAA21] A. Sheikh, A. Graell i Amat, and A. Alvarado, "Novel High-Throughput Decoding Algorithms for Product and Staircase Codes Based on Error-and-Erasure Decoding," *J. Lightw. Technol.*, vol. 39, no. 15, 2021.
- [MRS22] S. Miao, L. Rapp, and L. S., "Improved soft-aided decoding of product codes with dynamic reliability scores," J. Lightw. Technol., vol. 40, no. 22, pp. 7279-7288, 2022.

Motivation

Product codes (PCs) [Eli55] are powerful code construction for high speed optical communication systems
 Conventional decoding of PCs

Soft-decision decoding (SDD)

e.g.: turbo product decoding (TPD) [Pyn98]

- ✓ large decoding gain
- X high complexity
- X high internal decoder data flow

This work: **soft-aided HDD** with

Hard-decision decoding (HDD)

e.g.: iterative bounded distance decoding (iBDD)

- X small decoding gain
- ✓ low complexity
- ✓ low internal decoder data flow
- ✓ low complexity and reduced internal decoder data flow with hard message passing
- ✓ provide largest decoding gain among existing soft-aided algorithms [LSA19],[SAA21],[MRS22]

[Eli55] P. Elias, "Coding for noisy channels," in *IRE Convention Record, Part IV*, Mar. 1955.

[Pyn98] R. M. Pyndiah, "Near-optimum decoding of product codes: Block turbo codes, "IEEE Trans. Commun., vol. 46, no. 8, 1998.

- [LSA19] G. Liga, A. Sheikh, and A. Alvarado, "A novel soft-aided bit-marking decoder for product codes," in *Proc. ECOC.* 2019.
- [SAA21] A. Sheikh, A. Graell i Amat, and A. Alvarado, "Novel High-Throughput Decoding Algorithms for Product and Staircase Codes Based on Error-and-Erasure Decoding," *J. Lightw. Technol.*, vol. 39, no. 15, 2021.
- [MRS22] S. Miao, L. Rapp, and L. S., "Improved soft-aided decoding of product codes with dynamic reliability scores," J. Lightw. Technol., vol. 40, no. 22, pp. 7279-7288, 2022.

Overview

Motivation

Iterative Bounded Distance Decoding of PCs

Decoder with Dynamic Reliability Scores

List-Based Decoder with Dynamic Reliability Scores

PC of rate $r = k^2/n^2$ with (n, k, t) component codes, typically being BCH/RS codes

PC of rate r = k²/n² with (n, k, t) component codes, typically being BCH/RS codes
 Rows and columns of a PC block are decoded alternately with a component code decoder D_C

5 S., Miao, Rapp: Soft-aided Decoding for Optical Communications

Communications Engineering Lab (CEL)

Problem: What degrades the performance of iBDD?

Problem: What degrades the performance of iBDD?

- High miscorrection rate and error propagation
 - A miscorrection of $m{y}$ happens when $\mathsf{D}_\mathsf{C}(m{y}) = m{c} \in \mathcal{C}$ but $m{c}
 eq m{x}$, the transmitted codeword
 - PCs for optical communication consist of high rate BCH/RS codes which entails high miscorrection rate [MS86][Jus11]

- [MS86] R. McEliece and L. Swanson, "On the decoder error probability for Reed Solomon codes (Corresp.)," *IEEE Trans. Inf. Theory*, vol. 32, no. 5, 1986.
- [Jus11] J. Justesen, Performance of Product Codes and Related Structures with Iterated Decoding," IEEE Trans. Commun., vol. 59, no. 2, 2011.

- Problem: What degrades the performance of iBDD?
 - High miscorrection rate and error propagation
 - Component code decoder D_C limited to bounded distance, small number of correctable errors

- Problem: What degrades the performance of iBDD?
 - High miscorrection rate and error propagation
 - Component code decoder D_C limited to bounded distance, small number of correctable errors

Overview

Motivation

Iterative Bounded Distance Decoding of PCs

Decoder with Dynamic Reliability Scores

List-Based Decoder with Dynamic Reliability Scores

Problem: What degrades the performance of iBDD?

- High miscorrection rate and error propagation
- Component code decoder D_C limited to bounded distance, small number of correctable errors

Our solution:

- Introduce dynamic reliability score (DRS) to ensure near miscorrection free decoding
- Enhance D_C to have large decoding radius as BDD is not enough
- Find trade-off between decoding radius and miscorrection rate

Miscorrections often conflict with a highly reliable bits

Miscorrections often conflict with a highly reliable bits

- Such bits can be identified with
 - Output channel reliability higher than threshold T_a, as in soft-aided bit marking (SABM) [LSA19], [LCL⁺19]

[LSA19] G. Liga, A. Sheikh, and A. Alvarado, "A novel soft-aided bit-marking decoder for product codes", in Proc. ECOC (2019).

[LCL⁺19] Y. Lei, B. Chen, G. Liga, X. Deng, Z. Cao, J. Li, K. Xu, and A. Alvarado, "Improved decoding of staircase codes: The soft-aided bit-marking (SABM) algorithm", *IEEE Trans. Commun.*, 2019.

[HP18] C. Häger and H. D. Pfister, "Approaching miscorrection-free performance of product codes with anchor decoding", *IEEE Trans. Commun.*, 2018.

9 S., Miao, Rapp: Soft-aided Decoding for Optical Communications

Communications Engineering Lab (CEL)

Miscorrections often conflict with a highly reliable bits

Such bits can be identified with

- Output channel reliability higher than threshold T_a, as in soft-aided bit marking (SABM) [LSA19], [LCL⁺19]
- Successfully decoded bits that rarely conflict with later component code decoding decisions, as in anchor decoding (AD) [HP18]

[LSA19] G. Liga, A. Sheikh, and A. Alvarado, "A novel soft-aided bit-marking decoder for product codes", in *Proc. ECOC* (2019).

[LCL⁺19] Y. Lei, B. Chen, G. Liga, X. Deng, Z. Cao, J. Li, K. Xu, and A. Alvarado, "Improved decoding of staircase codes: The soft-aided bit-marking (SABM) algorithm", *IEEE Trans. Commun.*, 2019.

[HP18] C. Häger and H. D. Pfister, "Approaching miscorrection-free performance of product codes with anchor decoding", *IEEE Trans. Commun.*, 2018.

Miscorrections often conflict with a highly reliable bits

Such bits can be identified with

- Output channel reliability higher than threshold T_a, as in soft-aided bit marking (SABM) [LSA19], [LCL⁺19]
- Successfully decoded bits that rarely conflict with later component code decoding decisions, as in anchor decoding (AD) [HP18]
- We introduce a dynamic reliability score (DRS) which reflect the overall reliability of a bit from both aspects

- [LSA19] G. Liga, A. Sheikh, and A. Alvarado, "A novel soft-aided bit-marking decoder for product codes", in *Proc. ECOC* (2019).
- [LCL⁺19] Y. Lei, B. Chen, G. Liga, X. Deng, Z. Cao, J. Li, K. Xu, and A. Alvarado, "Improved decoding of staircase codes: The soft-aided bit-marking (SABM) algorithm", *IEEE Trans. Commun.*, 2019.
- [HP18] C. Häger and H. D. Pfister, "Approaching miscorrection-free performance of product codes with anchor decoding", *IEEE Trans. Commun.*, 2018.

Dynamic Reliability Score (DRS) [MRS22]

Channel model:

- BPSK signal $\tilde{x}_i \in \{0, 1\}$ transmitted over binary input AWGN channel.
- Channel output $\tilde{y}_i = (-1)^{\tilde{x}_i} + n_i$

Dynamic Reliability Score (DRS) [MRS22]

Channel model:

- BPSK signal $\tilde{x}_i \in \{0, 1\}$ transmitted over binary input AWGN channel.
- Channel output $\tilde{y}_i = (-1)^{\tilde{x}_i} + n_i$
- DRSs Reflect the reliability of the bits in a PC codeword
- Represented with 5 bit integers, i.e., range [0, 31]
- Initialized with soft channel information
 - Sort and divide channel outputs into even groups
 - Assign high DRS to the bits with high channel outputs

[MRS22] S. Miao, L. Rapp, and L. S., "Improved soft-aided cecoding of product codes with dynamic reliability scores," J. Lightw. Technol., vol. 40, no. 22, pp. 7279-7288, 2022.

Updating DRS

Updated with hard messages

- DRSs are increased (+1) for bits that stay constant during the decoding
- DRSs are decreased (-1) for bits where row and column decoder disagrees
- Clip to [0, 31]

Miscorrection Detection with DRSs

- The decision should not conflict with bits with high DRS (similar idea used in [HP18][LSA19])
- The sum of the DRSs of the bits that are flipped should be small

- [HP18] C. Häger and H. D. Pfister, "Approaching miscorrection-free performance of product codes with anchor decoding", IEEE Trans. Commun., vol. 66, no. 7, 2018.
- [LSA19] G. Liga, A. Sheikh, and A. Alvarado, "A novel soft-aided bit-marking decoder for product codes," in Proc. ECOC. 2019.

Enhanced Component Decoder D_C

Step 1: Introduce erasures (Ternary decision):

$$y_i = \begin{cases} ? \text{ (erasure)} & \text{if } |\tilde{y}_i| < T \\ \text{sign}(\tilde{y}_i) & \text{if } |\tilde{y}_i| \geq T \end{cases}$$

Error-and-Erasure Decoding

- Classical bounded distance error-and-erasure decoding of BCH codes by extending Gorenstein-Zierler decoding [For65]
- Can decode if D errors and E erasures if $2D + E < d_{\min}$
- **Example:** Decoding success rate of code with $d_{\min} = 6$ (BCH even-weight subcode)

[For65] G. Forney, "On decoding BCH codes," IEEE Trans. Inf. Theory, vol. 11, no. 4, pp. 549–557, 1965.

Step 1: Introduce erasures

 $y_i = \begin{cases} ? \text{ (erasure)} & \text{if } |\tilde{y}_i| < T \\ \text{sign}(\tilde{y}_i) & \text{if } |\tilde{y}_i| \geq T \end{cases}$

Step 2: Replace the erasures with complementary binary values to generate test patterns $(p^{(1)}, p^{(2)})$

Typically
$$p^{(1)} = (0 \cdots 0),$$

 $p^{(2)} = (1 \cdots 1)$

Step 3:

Decode the test patterns with BDD
 Select the decoding results

- Textbook-style list decoding [Moo05]
- Can decode some patterns with D errors and E erasures when $2D + E \ge d_{\min}$
- **Example:** Decoding success rate of code with $d_{\min} = 6$ (BCH even-weight subcode)

Step 1: Introduce erasures

- $y_i = \begin{cases} ? \text{ (erasure)} & \text{if } |\tilde{y}_i| < T \\ \text{sign}(\tilde{y}_i) & \text{if } |\tilde{y}_i| \geq T \end{cases}$
- Modified Step 2: Replace the erasures with complementary binary random values to generate test patterns $(p_1^{(1)}, p_1^{(2)})$
 - Each decoding iteration, use different random patterns $(p_1^{(1)}, p_1^{(2)})$

Step 3:

Decode the test patterns with BDD
 Select the decoding results

[Moo05] T. K. Moon, Error Correction Coding - Mathematical Methods and Algorithms. John Wiley & Sons, Inc., 2005.

Communications Engineering Lab (CEL)

- Textbook-style list decoding [Moo05]
- Can decode some patterns with D errors and E erasures when $2D + E \ge d_{\min}$
- Example: Decoding success rate of code with $d_{\min} = 6$ (BCH even-weight subcode) after $\ell = 5$ decoding trials

 $y_i = \begin{cases} ? \text{ (erasure)} & \text{if } |\tilde{y}_i| < T \\ \text{sign}(\tilde{y}_i) & \text{if } |\tilde{y}_i| \geq T \end{cases}$

- Step 2: Replace the erasures with complementary binary random values to generate test patterns $(p_1^{(1)}, p_1^{(2)})$
 - Each decoding iteration, use different patterns $(p_1^{(1)}, p_1^{(2)})$

Step 3:

Decode the test patterns with BDD
 Miscorrection (MC) detection

Step 1: Introduce erasures

 $y_i = \begin{cases} ? \text{ (erasure)} & \text{if } |\tilde{y}_i| < T \\ \text{sign}(\tilde{y}_i) & \text{if } |\tilde{y}_i| \geq T \end{cases}$

- Step 2: Replace the erasures with complementary binary random values to generate test patterns $(p_1^{(1)}, p_1^{(2)})$
 - Each decoding iteration, use different patterns $(p_1^{(1)}, p_1^{(2)})$

Step 3:

Decode the test patterns with BDD
 Miscorrection (MC) detection

Select the decoding result

Flow Chart of the Proposed Algorithm

Parameter Analysis – Simulation Results

Optimized erasure threshold T_{opt} for different PCs with BCH component codes (different t and even-weight subcodes)

Parameter Analysis – Simulation Results

- Optimized erasure threshold T_{opt} for different PCs with BCH component codes (different t and even-weight subcodes)
- Threshold gains compared to iBDD with 20 iterations

PC of rate 0.87, component code [255, 238, 2] even weight subcode of BCH code

- PC of rate 0.87, component code [255, 238, 2] even weight subcode of BCH code
- Percentage of marked anchor bits, percentage of wrongly marked anchor bits, and average number of miscorrections in every iteration

Overview

Motivation

Iterative Bounded Distance Decoding of PCs

Decoder with Dynamic Reliability Scores

List-Based Decoder with Dynamic Reliability Scores

[MRS22b] S. Miao, L. Rapp, and L. S., "Improved soft-aided decoding of product codes with adaptive performance-complexity trade-off," *Proc. ECOC*, Basel, CH, 2022.

[MRS22b] S. Miao, L. Rapp, and L. S., "Improved soft-aided decoding of product codes with adaptive performance-complexity trade-off," *Proc. ECOC*, Basel, CH, 2022.

Communications Engineering Lab (CEL)

Step 1: Introduce erasures

 $y_i = \begin{cases} ? \text{ (erasure)} & \text{if } |\tilde{y}_i| < T \\ \text{sign}(\tilde{y}_i) & \text{if } |\tilde{y}_i| \geq T \end{cases}$

- Step 2: Replace the erasures with \mathcal{J} pairs of complementary binary random values to generate test patterns $(\boldsymbol{p}_i^{(1)}, \boldsymbol{p}_i^{(2)})$
 - J is a configurable parameter for complexity-performance trade-off

Step 3:

Decode the test patterns with BDD
 Miscorrection (MC) detection

[MRS22b] S. Miao, L. Rapp, and L. S., "Improved soft-aided decoding of product codes with adaptive performance-complexity trade-off," *Proc. ECOC*, Basel, CH, 2022.

Step 1: Introduce erasures

 $y_i = \begin{cases} ? \text{ (erasure)} & \text{if } |\tilde{y}_i| < T \\ \text{sign}(\tilde{y}_i) & \text{if } |\tilde{y}_i| \geq T \end{cases}$

- Step 2: Replace the erasures with \mathcal{J} pairs of complementary binary random values to generate test patterns $(\boldsymbol{p}_i^{(1)}, \boldsymbol{p}_i^{(2)})$
 - J is a configurable parameter for complexity-performance trade-off

Step 3:

Decode the test patterns with BDD
 Miscorrection (MC) detection

Select the decoding result

[MRS22b] S. Miao, L. Rapp, and L. S., "Improved soft-aided decoding of product codes with adaptive performance-complexity trade-off," *Proc. ECOC*, Basel, CH, 2022.

Conclusions & Outlook

- Proposed a novel soft-aided HDD algorithm with increased number of correctable errors with additional miscorrection control
- Provides comparable decoding performance with soft decision decoding
- Low complexity and internal decoder data flow
- Analysis and extension to generalized PCs and zipper codes [MMR⁺24]

[MMR ⁺ 24]	S. Miao, J. Mandelbaum, L. Rapp, H. Jäkel, L. S., "Performance analysis of generalized product codes with irregular degree distribution,"
	submitted to ISIT, https://arxiv.org/abs/2401.16977
[MRS22a]	S. Miao, L. Rapp, and L. S., "Improved soft-aided decoding of product codes with dynamic reliability scores," J. Lightw. Technol., vol. 40, no.
	22, pp. 7279-7288, 2022.
[MRS22b]	S. Miao, L. Rapp, and L. S., "Improved soft-aided decoding of product codes with adaptive performance-complexity trade-off," Proc. ECOC,
	Basel, CH, 2022.

28 S., Miao, Rapp: Soft-aided Decoding for Optical Communications

Conclusions & Outlook

- Proposed a novel soft-aided HDD algorithm with increased number of correctable errors with additional miscorrection control
- Provides comparable decoding performance with soft decision decoding
- Low complexity and internal decoder data flow
- Analysis and extension to generalized PCs and zipper codes [MMR⁺24]

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 101001899).

[MMR ⁺ 24]	S. Miao, J. Mandelbaum, L. Rapp, H. Jäkel, L. S., "Performance analysis of generalized product codes with irregular degree distribution,"
	submitted to /S/T, https://arxiv.org/abs/2401.16977
[MRS22a]	S. Miao, L. Rapp, and L. S., "Improved soft-aided decoding of product codes with dynamic reliability scores," J. Lightw. Technol., vol. 40, no.
	22, pp. 7279-7288, 2022.
[MRS22b]	S. Miao, L. Rapp, and L. S., "Improved soft-aided decoding of product codes with adaptive performance-complexity trade-off," Proc. ECOC,
	Basel, CH, 2022.

