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Outline

• Introduction to probabilistic amplitude shaping (PAS)

• Energy-based arithmetic coding (AC) for PAS
• Direct AC-DM: based on lexicographical order of sequences: simple implementation

• Peeling-based AC-DM: extension of constant-composition distribution matching (CCDM) to handle multiple 

compositions as well as more general extensions to include energy and other metrics

• Approximations

• Performance evaluation

• Conclusion

Two classes of energy-based AC methods

Foundation and principles

Approximate solution

Direct AC-DM: Lexicography

Foundation and principles

Approximate solution

Peeling-Based AC-DM: Energy, Composition
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• Coded modulation
• In cellular wireless systems, high-order modulation is combined with binary forward-error-correction (FEC) 

to achieve high spectral efficiency for mobile data transmission

• The coded modulation scheme usually endows a uniform distribution over the per-dimension 

constellations

• Aim: preserve constellation architecture, change distribution.

• Shaping gain over AWGN channel
• The optimal MB-distributed input exhibits a 

shaping gain over the uniformly distributed 

input over an ASK constellation

• The shaping gain increases with increasing 

rates and constellation sizes

Motivation: Shaping Gain

≃ 1.243 dB shaping gain
over uniform 32ASK

G. Forney, Jr., R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient modulation for band-limited channels,” IEEE Trans. J. Sel. Areas Commun., vol. 2, pp. 632–647, Sept. 1984.
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Probabilistic Shaping and Maxwell-Boltzmann Distribution

• Probabilistic shaping
• Generally, it is a technique to generate a target non-uniform distribution

on equidistant constellation points to reduce or close the shaping gap

• Maxwell-Boltzmann (MB) distribution
• Over the AWGN channel, the mutual information obtained by optimized

Maxwell-Boltzmann input distribution exhibits negligible difference from 

the capacity-achieving input distribution over ASK constellations 

The road to channel capacity

F. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, pp. 913-929, May. 1993

−7 −5 −3 −1 1 3 5 7

Example: amplitude shift keying constellation (ASK-8)

Uniform distribution Non-uniform distribution

−7 −5 −3 −1 1 3 5 7

max
𝜈, Δ

𝕀 𝑋𝜈;  Δ𝑋𝜈 + 𝑧  subject to 𝔼 Δ𝑋𝜈
2 ≤ P

Maximize mutual information subject to 
average energy constraint over AWGN

𝑋𝜈 is distributed according to 𝑃MB

𝑃MB 𝑥 =
1

𝑍𝜈
e−𝜈𝑥2

𝑥 ∈ ±1, ±3, … , ±(2𝑀 − 1)
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• Standard ASK: symbols are uniformly distributed

• PAS: Separate sign from magnitude to ‘shape’ magnitude distribution

ASK Probabilistic Amplitude Shaping
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𝑏𝑏  𝑏𝑏  𝑏𝑏 … (𝑏𝑏)

𝑛

Bits-to-symbol mapping
• Bits are uniform  symbols are uniform
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3
1

× {−1,1}

 𝑏𝑏 𝑏 

Bits-to-sequences mapping 
• Induces non-uniform distribution 

on amplitude sequences
• Symbols → bits used for FEC
• Sign bits as FEC parities

𝑚 = 2 𝑚 = 4
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• Transmission chain of a typical PAS architecture

• “Distribution Matching”
• Sequence space induces non-uniform marginal distribution over symbols {±1, ±3, … , ±(2𝑀 − 1)}

• Main idea is that that distribution should be closer to capacity-achieving distribution than uniform, e.g., more 

Gaussian-like in the AWGN setting

Transmission with Probabilistic Amplitude Shaping

Distribution 
matcher

Amplitude-
to-bit 

mapper

Systematic 
FEC encoder

0 → 1 
1 → −1

𝑛 amplitudes𝑘 bits

𝑛(𝑀 − 1) 
amplitude bits 𝑛 parity bits

𝑛 sign 
bits

𝑛 symbols

0,1,0,0,…,1 3,1,5,…,3

11,01,00,…,11 1,1,0,…,1 -1,-1,1,…,-1

-3,-1,5,…,-3

(2𝑘 distinct amplitude sequences)
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Probabilistic Amplitude Shaping (PAS)

• PAS is a recently introduced technique for coded modulation
• It combines an outer layer of amplitude shaping with an inner layer of binary forward-error-correction coding

• It can provide a low-complexity and flexible integration with existing coded modulation schemes

• It can provide large shaping gain and inherent rate adaptation functionality by the outer layer of shaping

Key application scenario of our study and potential use cases for 6G era 

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun., vol. 63, pp. 4651–4665, Dec. 2015
P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, pp. 430–434, Jan. 2016

Distribution 

Dematching

Bit-amplitude 

Mapping Systematic 

FEC 

Decoding

Received 
constellationsBit-wise 

LLR 

Demapping

Est. 𝑛(𝑀 − 1) 
amplitude bits

Est. 𝑛 
amplitudes

Est. 𝑘 bits

𝑛(𝑀 − 1) LLRs

𝛾𝑛 LLRs

(1 − 𝛾)𝑛 LLRs

Est. 𝛾𝑛 bits

M
u

x

Uniform bits Distribution 

Matching

Non-uniform
amplitudes

Non-uniform
amplitude bits

Non-uniform
systematic bits

𝑛(1 − 𝛾) 
parity bits

Amplitude-bit 

Mapping

Non-uniform 
constellations

Bit-amplitude 

Mapping

Sign 

Mapping

𝑛(𝑀 − 1) 
amplitude bits

𝑛 amplitudes

𝑘 bits

𝑛 sign bits

0,1,0,0,…,1

3,1,5,…,3

11,01,00,…,11 1,1,0,…,1

-1,-1,1,1,…,-1

-3,-1,5,…,-3

Rate 𝑅c =
𝑀−1+𝛾

𝑀

D
e

m
u

x

𝛾𝑛 uniform bits

1,0,1,1,…,0

𝛾𝑛 uniform bits

1,0,1,1,…,0

Systematic 

FEC 

Encoding
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Fixed-to-Fixed Distribution Matching 

• Distribution matching (DM) is a key component in PAS transmission architectures
• It transforms sequences of uniform bits to sequences of per-dimension amplitudes, aiming at inducing a 

target probability distribution 𝒫 over the underlying amplitude alphabet

• The transformation needs to be invertible, i.e., the input can be correctly reconstructed given the output

• Fixed-to-fixed DM imposes deterministic lengths for input and output sequences

• Typical design objective
• Perform low-complexity invertible fixed-to-fixed distribution matching

• Rate 𝑘/𝑛 close to entropy H(𝒫) bits/symbol (e.g., output close to i.i.d. according to 𝒫)

From fixed-length uniform bit sequences to fixed-length non-uniform symbol sequences

Amplitude alphabet 𝒜 = {1, 3, 5, 7}
(ASK-8)

1 3 5 7

𝒫 1 = 0.5

𝒫 3 = 0.25

𝒫 5 = 0.15

𝒫 7 = 0.1

Distribution 
Matching

u = (𝑢1, 𝑢2 , … , 𝑢𝑘) s = (𝑠1, 𝑠2, … , 𝑠𝑛)

∈
0

,1

∈
𝒜
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Preliminaries

• Consider sequences of symbols from an alphabet 𝒜 = {𝑎1, 𝑎2, … , 𝑎𝑚} of size 𝑚
• Symbol 𝑎𝑖 has energy 𝐄 𝑎𝑖 = (𝑎𝑖

2-1)/8 and symbol energies are nonnegative and mutually distinct

• ASK-8 (𝑚 = 4, 𝒜 = {1, 3, 5, 7}) example: (𝐄 𝑎1 , 𝐄 𝑎2 , 𝐄 𝑎3 , 𝐄 𝑎4 ) = 0,1,3,6 .

• Energy based cardinalities
• The number of sequences of length 𝑛 and energy equal to 𝐸 is denoted by 𝑁 𝑛, 𝐸

• The number of sequences of length 𝑛 and energy less than or equal to 𝐸 is denoted by 𝑁c(𝑛, 𝐸)

Notation and terminology

𝑁 𝑛, 𝐸 = 𝐬 s ∈ 𝒜𝑛: 𝐄 s = 𝐸

𝑁c(𝑛, 𝐸) = 𝐬 s ∈ 𝒜𝑛: 𝐄 s ≤ 𝐸

The composition of a sequence s = (𝑠1, 𝑠2, … , 𝑠𝑛) The energy of a sequence s = (𝑠1, 𝑠2, … , 𝑠𝑛)

𝐤 s = 𝑘1 s , 𝑘2 s , … , 𝑘𝑚 s 𝐄 s = 

𝑖=1

𝑛

𝐄(𝑠𝑖)

𝑘𝑖(s) is the number of occurrences 
of 𝑎𝑖 ∈ 𝒜 in the sequence s

Accumulation of symbol energies 
along the sequence s
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Fixed Length Distribution Matching: MB and CCDM

• MB distribution and maximum entropy principle
• For a given constellation, the probability distribution over the constellation that maximizes the Shannon 

entropy, subject to an average energy constraint, is an MB distribution 𝑃MB

• Among all sequences having length 𝑛 and “energy” 𝐸, the set of sequences composed according to typical 

realizations of the MB distribution 𝑃MB has the largest cardinality

• Constant composition distribution matching (CCDM) and PAS architectures
• CCDM is a well-known solution to probabilistic shaping

• It picks amplitude sequences of a single composition according to the MB distribution and typically uses 

arithmetic coding to selects a particular amplitude sequence

• It is concatenated with an inner layer of forward-error-correction (FEC) encoder to generate sign bits for the 

amplitudes: this represents the key components of a typical PAS transmission architecture 

Energy-constrained sequences can lead to Maxwell-Boltzmann distribution

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, pp. 430–434, Jan. 2016

F. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, pp. 913-929, May. 1993

max
𝑃

H(𝑃)  subject to 𝔼𝑋~𝑃 𝑋2 = ω 𝑃MB(𝑥) ∝ e−𝜈(ω)𝑥2optimal solution

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun., vol. 63, pp. 4651–4665, Dec. 2015
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Traditional Shaping (Energy Based) Methods

• Traditional approaches include shell mapping and enumerative sphere shaping
• Both SM and ESS may be viewed as methods for realizing sphere shaping

• One of the main technical problems in these approaches is ordering and enumerating sequences based on 

energy, and complexity is a key challenge

• These approaches assume a fixed and short block length, the shaping performance of which is thus limited

• However, as Forney already noted earlier: 

• 𝑁(𝑛, 𝐸) and 𝑁c(𝑛, 𝐸) play a fundamental role in SM and ESS
• The key challenge is determining such quantities with high efficiency and accuracy for a wide and varying 

range of 𝑛 and 𝐸
• A straightforward computation for a value of 𝑁(𝑛, 𝐸) or 𝑁c(𝑛, 𝐸) has a computational complexity quadratic in 𝑛

• Moreover, such a value can have a very large magnitude so that a straightforward tabulation method to accurately and/or approximately 

store all such values for a wide range of 𝑛 and 𝐸 will have a storage complexity that is prohibitively large

Complexity considerations on existing sphere shaping approaches

R. Laroia, N. Farvardin, and S. A. Tretter, “On optimal shaping of multidimensional constellations,” IEEE Trans. Inf. Theory, vol. 40, no. 4, pp. 1044–1056, Jul. 1994

F. M. J. Willems and J. J. Wuijts, “A pragmatic approach to shaped coded modulation,” in Proc. IEEE 1st Symp. Commun. and Veh. Technol. in the Benelux, Delft, The Netherlands, 1993
G. D. Forney, Jr., “Trellis shaping,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 281–300, Mar. 1992

“As 𝒏 → ∞, spherical constellations require large 
table look-ups, and therefore become impractical.”
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1. We can use Arithmetic Coding (AC) to map input bits into i.i.d. amplitudes distributed 

according to the MB distribution
• This leads to variable rate encoding, which has practical drawbacks.

• We developed a version of this where 𝑛 is fixed but the number of encoded input bits varies (not the focus of this 

presentation).

2. CCDM (Schulte and Bocherer, 2015)
• Pick a fixed amplitude composition (𝑘1, 𝑘2 , … , 𝑘𝑚) so that 𝑘𝑖 ≃ 𝑛𝑝𝜈(𝑎𝑖).

• Use arithmetic coding to select a particular sequence with the given composition.

• Asymptotically in 𝑛 achieves near optimal shaping gain.

• Not very efficient for small 𝑛 (too few sequences).

• Multi-partition DM (MPDM, Fehenberger et al., 2019)

3. Sphere shaping: Use minimum energy sequences
• Marginal distribution is close to MB.  

• Near optimal shaping gain and minimum energy use for given rate.

• “As 𝑁 → ∞ spherical constellations require large table look-ups, and therefore become impractical.” (Forney, 1992)

Three Approaches to MB Distribution
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• “CCDM,” “MPDM” and “Sphere Shaping”

• Key design aspects
• How to select compositions to meet target?

• How to design efficient bit-to-symbol mapping?

Illustration of Some DM Designs

Symbol Sequence Composition Energy

Symbol 1 Symbol 2 Symbol 3 Symbol 4 Index Description

1 1 1 1 1 (4, 0) 4

1 1 1 3

2 (3, 1) 13
1 1 3 1

1 3 1 1

3 1 1 1

1 1 3 3

3 (2, 2) 20

1 3 1 3

1 3 3 1

3 1 1 3

3 1 3 1

3 3 1 1

1 3 3 3

4 (1, 3) 28
3 1 3 3

3 3 1 3

3 3 3 1

3 3 3 3 5 (0, 4) 36

Bit Sequence

Bit 1 Bit 2 Bit 3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

mapping

all sequences of energy 138 sequences with minimal energy

“CCDM” “MPDM”
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• We present two DM methods that allow for realizing exact sphere shaping 
• Direct AC-DM

• Peeling

• Approximation of key parameters 𝑁(𝑛, 𝐸) and 𝑁c(𝑛, 𝐸) for implementation.

• Practical implementation

Novel DM Designs

Peeling

𝑁c based

𝑁/𝑁c based

𝑁c based

𝑁/𝑁c based

Direct AC-DM
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CCDM Arithmetic Coding – Composition Graph
• AC: Map 𝑥 ∈ 0,1 to sequence

𝑥0 1

1 3 5 7

7775737111 13 15 17 31 33 35 37 51 53 55 57

…
 …

Total probability, all sequences equally probable

Intervals correspond to accumulated prefix
Partitioning of residual sequence space by composition 
Nodes (states) represents composition of residual string
Traverse nodes accumulating string according to 𝑥

Terminate on empty composition

…
 …

{𝑘MB}

{0}

𝑎1 = 1
𝑎2 = 3 𝑎3 = 5

𝑎4 = 7

{𝑘MB− Ԧ𝑒1} {𝑘MB− Ԧ𝑒4}

1 5 71 1 7

{𝑘MB−2 Ԧ𝑒1} {𝑘MB− Ԧ𝑒1 − Ԧ𝑒3} {𝑘MB− Ԧ𝑒1 − Ԧ𝑒4} {𝑘MB−2 Ԧ𝑒4}



16

CCDM Arithmetic Coding – Transitions on Composition Graph

• AC: Map 𝑥 ∈ 0,1 to sequence
• Each node represents to a disjoint union of its children

• Transition probabilities given by cardinalities of represented continuations

{𝑘MB}

𝑝1
𝑝2 𝑝3

𝑝4

{𝑘MB− Ԧ𝑒1} {𝑘MB− Ԧ𝑒4}

𝑥

1 3 5 7

{𝑘MB− Ԧ𝑒2} {𝑘MB− Ԧ𝑒3}

𝑝𝑗 = 𝑝 𝑘MB → 𝑘MB − Ԧ𝑒𝑗 =
𝑠: 𝑘 = 𝑘MB − Ԧ𝑒𝑗

𝑠: 𝑘 = 𝑘MB

=
𝑠: 𝑘 = 𝑘MB − Ԧ𝑒𝑗

σ𝑙 𝑠: 𝑘 = 𝑘MB − Ԧ𝑒𝑙

=

𝑛−1

𝑘MB– Ԧ𝑒𝑗

𝑛

𝑘MB

=
(𝑘MB)𝑗

𝑛
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Energy-Based Sphere Shaping Arithmetic Coding 

• Energy graph representation
• Partitioning of sequence space by length and energy

• Nodes (states) correspond to residual length and residual (max) energy

𝑝𝑗 =
𝑁c 𝑛 − 1, ത𝐸– E 𝑎𝑗

𝑁c 𝑛, ത𝐸
𝑛, ത𝐸

… … … …

𝑛 − 1, ത𝐸 − E(𝑎1)

𝑛 − 2, ത𝐸 − 2E(𝑎1)

… … … …

𝑛 − 2, ത𝐸 − E 𝑎1 − E(𝑎4) 𝑛 − 2, ത𝐸 − 2E(𝑎4)

𝑎1 𝑎2 𝑎3
𝑎4

𝑛 − 1, ത𝐸 − E(𝑎4)

𝑎1 𝑎4 𝑎4𝑎1

…
 …

Terminates at 𝑛 = 0 with residual energy ≥ 0

𝑁c 0, ത𝐸 = 1
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• Energy-based sphere shaping
• Consider sphere shaping using all sequences {𝑠1

𝑛} of energy at most ത𝐸 and length 𝑛

• Ideal sphere shaping samples the sequence space according to the distribution

• Given a prefix of length 𝑛1 and energy 𝐸1, the number of sequences where the next symbol has energy 𝐸′ is given by  

𝑁(𝑛 − 𝑛1 − 1, ത𝐸 − 𝐸1 − 𝐸′), and the fraction of sequences is

• These fractions are used for sphere shaping encoding in arithmetic coding

• Remarks
• We can apply AC directly to use all sequences of fixed energy or all sequences with at most some fixed energy

• Our basic approach is to approximate 𝑁(𝑛, 𝐸) and 𝑁c(𝑛, 𝐸) and to determine the loss due to the approximation to give 

predictable performance

Fundamental Role of 𝑁(𝑛, 𝐸) in Sphere Shaping

𝑝 𝑠1
𝑛 =

1

𝑁c 𝑛, ത𝐸

𝑁(𝑛 − 𝑛1 − 1, ത𝐸 − 𝐸1 − 𝐸′)

𝑁c(𝑛 − 𝑛1, ത𝐸 − 𝐸1)
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• First phase of Peeling
• Assume 𝑚 and uniform distribution over strings of length 𝑛 and energy at most ഥ𝐸

• Each subsequent factor is equivalent to selecting a maximum energy symbol count for smaller 𝑚, 𝑛, 𝐸

• These give rise to the transition probabilities used in the AC process

• Second phase of Peeling
• This is based on the composition selected in the first phase

• The continuation of the AC process for constant composition enables the second factor

Sphere Shaping by Peeling

𝑛𝑗 = 𝑛 − 

𝑚′=𝑚−𝑗+1

𝑚

𝑘𝑚′ 𝐸𝑗 = ത𝐸 − 

𝑚′=𝑚−𝑗+1

𝑚

𝑘𝑚′E 𝑎𝑚′

𝑝 𝑘𝑚−𝑗 𝑘𝑚−𝑗+1, … , 𝑘𝑚; 𝑚, 𝑛, ത𝐸 = 𝑝 𝑘𝑚−𝑗 𝑚 − 𝑗, 𝑛𝑗 , 𝐸𝑗

𝑝 𝑘 = 𝑝 𝑘𝑚 𝑝 𝑘𝑚−1 𝑘𝑚 ⋯ 𝑝 𝑘1 𝑘𝑚, … , 𝑘2

and
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• Transitions from parent to child nodes
• The partitioning at each internal node induces a transition probability distribution over its child nodes

• A transition probability is determined by the relative cardinality of the set that a child node represents

• E.g., at the root, transition probabilities are of the form

• More generally, transitions from a depth 𝑗 node are of the form

• These transition probabilities induce a probability distribution over the leaf nodes

Peeling – Transitions on Energy Tree

Root {𝑚, 𝑛, ത𝐸}
…

 …

{𝑘𝑚 , 𝑚, 𝑛, ത𝐸}

{𝑘𝑚−1, 𝑘𝑚 , 𝑚, 𝑛, ത𝐸}

{𝑘𝑚−2, 𝑘𝑚−1, 𝑘𝑚, 𝑚, 𝑛, ത𝐸}

𝑝 𝑘𝑚 𝑚, 𝑛, ത𝐸 =
𝑘𝑚, 𝑚, 𝑛, ത𝐸

𝑚, 𝑛, ത𝐸

=

𝑛

𝑘𝑚
𝑁c

𝑚−1
𝑛 − 𝑘𝑚, ത𝐸 − 𝑘𝑚E 𝑎𝑚

𝑁c
𝑚

𝑛, ത𝐸

“fundamental role of 𝑁c  in peeling”

𝑝 𝑘𝑚−𝑗 𝑘𝑚−𝑗+1, … , 𝑘𝑚; 𝑚, 𝑛, ത𝐸 =
𝑘𝑚−𝑗 , 𝑘𝑚−𝑗+1, … , 𝑘𝑚, 𝑚, 𝑛, ത𝐸

𝑘𝑚−𝑗+1, … , 𝑘𝑚, 𝑚, 𝑛, ത𝐸
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Approximation of 𝑁(𝑛, 𝐸) and 𝑁c(𝑛, 𝐸)

• 𝑁 𝑛, 𝐸 is the coefficient of 𝑥𝐸 in the polynomial 𝑍0(𝑥)𝑛

𝑁 𝑛, 𝐸 = 𝐬 𝑠 ∈ 𝒜𝑛: 𝐄 𝑠 = 𝐸

log 𝑁c(𝑛, 𝐸)

𝑍0 𝑥 = 

𝑖=1

𝑚

𝑥E(𝑎𝑖)

log 𝑁 𝑛, 𝐸

𝐸
𝑛

𝐸
𝑛

𝑁c(𝑛, 𝐸) = 𝐬 𝑠 ∈ 𝒜𝑛: 𝐄 𝑠 ≤ 𝐸
𝑁 𝑛, 𝐸 = coeff 𝑍0 𝑥 𝑛, 𝑥𝐸
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Hayman Approximation for 𝑁(𝑛, 𝐸)

• Hayman method to estimate complex integrals of analytic functions
• Hayman’s method is based on the saddle-point method; in our case we have

• For fixed 𝜔 Hayman’s method shows that 𝑁 𝑛, 𝜔𝑛 = 𝑁HM 𝑛, 𝜔𝑛 1 + 𝑜𝑛(1) for 𝜔𝑛 ∈ ℕ

• Probabilistic interpretation of result
• Let 𝑘𝜆 𝜔 be a random variable distributed according to 𝑝𝜔 and let 𝑘𝜆 𝜔 ,𝑛 be a random variable that has the 

same distribution as the sum of 𝑛 i.i.d. copies of 𝑘𝜆 𝜔

• The Hayman approximation in this case is closely related to the Gaussian approximation of the sum 𝑘𝜆 𝜔 ,𝑛

Hayman approximation

𝑁 𝑛, 𝐸 =
1

2𝜋i
ර  𝑥−(𝐸+1)𝑍0(𝑥)𝑛d𝑥

Γ

𝑁HM 𝑛, 𝜔𝑛 =
1

2𝜋𝑛𝑉 𝜔
e𝑛𝐻(𝜔)

W. K. Hayman, “A generalization of Stirling’s formula,” Journal für die reine und angewandte Mathematik, vol. 1956, no. 196, pp. 67–95, 1956

𝜆
𝑍0

′ (𝜆)

𝑍0(𝜆)
=

𝐸

𝑛
≡ 𝜔

ℙ 𝑘𝜆 𝜔 ,𝑛 = 𝜔𝑛 =
𝑁(𝑛, 𝜔𝑛)

e𝑛𝐻(𝜔)

𝑁(𝑛, 𝜔𝑛)

e𝑛𝐻(𝜔)
=

1

2𝜋
න

−𝜋

𝜋 𝑍0(𝜆(𝜔)ei𝜃)

𝑍0(𝜆(𝜔))

𝑛

e−i𝜔𝑛𝜃d𝜃

Choose circular contour near 
the saddle point of integrand

Estimate dominant contribution

The Shannon entropy of distribution 𝑝𝜔 is 𝐻(𝜔)
The variance associated to 𝑝𝜔 is 𝑉 𝜔

𝑝𝜔 𝑘 =
𝜆 𝜔 𝑘

𝑍0 𝜆 𝜔
, 𝑘 ∈ {𝐄 𝑎1 , … , 𝐄 𝑎𝑚 }

This is equal to the inverse Fourier transform
of the characteristic function 

𝜙𝑘𝜆 𝜔 ,𝑛
𝜃 = 𝔼 ei𝜃𝑘𝜆 𝜔 ,𝑛
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Improved Hayman Approximation for 𝑁(𝑛, 𝐸)

• High-order (Hayman) approximation of log 𝑁(𝑛, 𝜔𝑛) as

• For fixed 𝜔 = 𝐸/𝑛, the Hayman approximation converges as 𝑜𝑛(1)

• The Hayman approximations are less accurate for small 𝐸, large 𝐸, and small to moderate values of 𝑛
• For 𝑚 ≥ 3, the large 𝐸 region, i.e., for 𝐸 ≃ 𝑛𝐄(𝑎𝑚), is fundamentally not amenable to smooth approximation due to the sparseness of 

larger exponents in the polynomial 𝑍0; fortunately, this region is generally not needed for our application of interest

• Improving the Hayman approximation of log 𝑁(𝑛, 𝜔𝑛)
• We determine two smooth functions of 𝜔, 𝑅1 and 𝑅2, such that for fixed 𝜔 we have

• This results in an improved approximation of log 𝑁(𝑛, 𝜔𝑛) based on

• Note that the expansion in 
1

𝑛
can be formally extended to any fixed order larger than 2

Improving Hayman approximation

𝐺1 𝜔 =
3𝑉 𝜔 𝑉′′ 𝜔 − 2𝑉′(𝜔)2

24𝑉(𝜔)

𝐺2 𝜔 = −
𝑉 𝜔 𝑉′′′′(𝜔)

48

log 𝑁 𝑛, 𝜔𝑛 = log 𝑁HM 𝑛, 𝜔𝑛 +
𝐺1 𝜔

𝑛
+

𝐺2 𝜔

𝑛2 + 𝑜 𝑛−2

𝑁(𝑛, 𝜔𝑛)

𝑁HM 𝑛, 𝜔𝑛
= 1 +

𝑅1 𝜔

𝑛
+

𝑅2 𝜔

𝑛2 + 𝑜 𝑛−2

log 𝑁HM 𝑛, 𝜔𝑛 = 𝑛𝐻 𝜔 −
1

2
log 𝑛 − log 2𝜋𝑉(𝜔)

Explicit lower-order terms

Terms of order 𝑛, log 𝑛, and 1

Terms of order 
1

𝑛
 and 

1

𝑛2
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Approximation for 𝑁(𝑛, 𝐸)

• Special 𝑚 = 2 case for binomial coefficients
• The Hayman approximation in this case is determined exactly by the standard Stirling’s approximation

• But there are further improvements

• Tabulating 𝑠(𝐸) only for 𝐸 ≤ 16 and adding the corresponding 𝑐(𝐸) yield an approximation with smaller 

than 10−6 absolute error for all 𝑛 ≥ 32

• Further improving the Hayman approximation of log 𝑁(𝑛, 𝜔𝑛)
• The 𝑐(𝐸) term is also significant for small fixed 𝐸 for all 𝑚 ≥ 3 cases

• 𝑁(𝑛, 𝐸) is a polynomial in 𝑛 of degree 𝐸

• is the highest-order term in 𝑛 in an enumeration by composition of 𝑁(𝑛, 𝐸); e.g.,                                             for fixed 𝐸

Improving Hayman approximation

𝑐 𝐸 = 𝑠(𝐸) for 𝐸 ≤ 𝑛/2 and
𝑐 𝐸 = 𝑠(𝑛 − 𝐸) otherwise

H. Robbins, “A remark on Stirling’s formula,” The American Mathematical Monthly, vol. 62, no. 1, pp. 26–29, 1955

J. Stirling, Methodus differentialis: sive Tractatus de Summatione et Interpolatione Serierum Infinitarum. London, UK: G. Strahan, 1730

log 𝑁HM 𝑛, 𝜔𝑛 +
1

12

1

𝑛
−

1

𝐸
−

1

𝑛 − 𝐸
+ 𝑐(𝐸)

𝐺1 𝜔

𝑛
 term: 𝐺1 𝜔 =

1

12
1 −

1

𝜔
−

1

1−𝜔
 

Can be obtained from the more precise 
Stirling’s formula by Robbins 

This accounts for an improved accuracy for 
very small 𝐸 near 0 and very large 𝐸 near 𝑛

𝑠 𝐸 = log
2𝜋𝐸𝐸+

1
2e−𝐸e

1
12𝐸

𝐸!

𝑛
𝐸

𝑛
𝐸

𝑁 𝑛, 𝐸 =
𝑛𝐸

𝐸!
1 + 𝑂 𝑛−1
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Approximation for 𝑁(𝑛, 𝐸)

• Approximation accuracy for 𝑚 = 8
• Approximation error for log 𝑁(𝑛, 𝐸) below 10−3

for all 𝑛 > 16 and uniformly for most region of 𝐸

• Plot of log10 | log 𝑁 𝑛, 𝜔𝑛 − log 𝑁(𝑛, 𝜔𝑛) | for 𝑛 ∈ {24, … , 210}

• The approximation absolute errors are below 10−3outside 

of the following subregions: 𝑛, 𝐸 𝑛 ≤ 16}, 

𝑛, 𝐸 𝑛 ≤ 19, 𝐸 ≤ 6}, 

𝑛, 𝐸 16 < 𝑛 ≤ 400, 𝐸 ≥ 27.17𝑛 − 202.02}, and

𝑛, 𝐸 𝑛 > 400, 𝐸 ≥ 27.573𝑛 − 348.106}.

• Accuracy improves as 𝑛 increases

Numerical evaluation for QAM-256/ASK-16

Adding additional terms 
𝐺1(𝜔)

𝑛
, 

𝐺2(𝜔)

𝑛2  and 𝑐(𝐸) 

to the Hayman approximation
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Approximation for 𝑁c(𝑛, 𝐸)

• Hayman’s method also gives rise to a local expansion of the form

• We use the local expansion to approximate 𝑁c(𝑛, 𝐸)
• Cumulate the number of sequences of length 𝑛 and energy up to 𝐸

• 𝑁c(𝑛, 𝐸) is locally determined up to exponentially small corrections

• Integral approximation of Ψ results in an approximation for 𝑁c 𝑛, 𝐸

Local expansion approach

𝑁(𝑛, 𝜔𝑛 − 𝑗)

𝑁HM 𝑛, 𝜔𝑛
= 𝜆 𝜔 𝑗e

−
𝑗2

2𝑛𝑉 𝜔 1 + 𝑜𝑛 1

𝑁c 𝑛, 𝐸 = 

𝑗=0

𝐸

𝑁(𝑛, 𝐸 − 𝑗) ≃ e𝑛𝐻(𝜔)
Ψ 𝑛𝑉 𝜔 , 𝜆 𝜔 , 0

2𝜋𝑛𝑉(𝜔)

𝑁c 𝑛, 𝐸 = 𝑚𝑛 − 

𝑗=1

𝑛𝐄(𝑎𝑚)−𝐸

𝑁(𝑛, 𝐸 + 𝑗) ≃ 𝑚𝑛 1 − e𝑛 𝐻 𝜔 −log 𝑚
Ψ 𝑛𝑉 𝜔 , 𝜆 𝜔 −1, 0 − 1

2𝜋𝑛𝑉 𝜔

Integral approximation of Ψ

Ψ 𝜎2, 𝜆, 0 =
1

𝜆 + 1
+ 𝜎2

𝜋

2
𝜆

log 𝜆

𝜆 − 1
erfcx −

𝜎2 log 𝜆

2

Ψ 𝜎2, 𝜆, 𝑘 = 

𝑗=𝑘

∞

𝜆𝑗e
−

𝑗2

2𝜎2  (𝜆 < 1) 𝐸 < 𝜔u𝑛

𝐸 > 𝜔u𝑛

Can be improved to
1

𝑛
𝐿1

2

𝜔,
𝑗

𝑛
+

1

𝑛
𝐿1 𝜔,

𝑗

𝑛
+ 𝑜(𝑛−1)

Valid over the range 𝑗 = 𝑂( 𝑛)
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Approximation for 𝑁c(𝑛, 𝐸)

• Considerations on approximation accuracy and computational complexity
• For fixed 𝜔 = 𝐸/𝑛 the above integral approximation converges as 𝑜𝑛(1)

• However, the approximation is less accurate for small 𝑛 and 𝐸, and 𝐸 in a neighborhood around ωu𝑛

• It also involves nested evaluations of functions that may not be practically simple to compute

• An expanded approximation formula for log 𝑁c(𝑛, 𝜔𝑛)
• We simplify and approximate the above integral approximation into a practically implementable form that is 

also amenable to numerical improvement

• Formal characteristics
• Each additive term has an explicit and simple dependence on 𝑛

• Each smooth function depends only on normalized energy 𝜔 = 𝐸/𝑛 or scaled energy 𝜈 = 𝑛 𝜔 − 𝜔u

• The formula captures a special scaling behavior near 𝜔u

Expanded approximation

log 𝑁c 𝑛, 𝜔𝑛 = 𝑛𝐻sat 𝜔 + 𝐺0 𝜔 + 𝐺0
s 𝜈 +

1

𝑛
𝐺1

2

s 𝜈 +
1

𝑛
𝐺1 𝜔 +

1

𝑛
𝐺1

s 𝜈

( where 𝜔 =
𝐸

𝑛
 and 𝜈 = 𝑛(𝜔 − 𝜔u) )

Order-𝑛 term Order-1 terms Order-
1

𝑛
 term Order-

1

𝑛
 terms
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Approximation for 𝑁c(𝑛, 𝐸)

• Approximation accuracy for 𝑚 = 8
• Approximation error for log 𝑁c(𝑛, 𝐸) below 10−3 for all 𝑛 > 16 and uniformly for most region of 𝐸

• The approximation absolute errors are below 10−3 outside of the following subregions: 𝑛, 𝐸 𝑛 ≤ 16} and 𝑛, 𝐸 𝑛 ≤ 26, 𝐸 ≤ 26}

• Accuracy improves as 𝑛 increases

Numerical evaluation for QAM-256/ASK-16

All 𝑛 ≤ 1024 and 𝐸 ≤ 𝑛𝐄(𝑎𝑚) 𝑛 ∈ {24, 25, … , 210} and 𝐸 ≤ 𝑛𝐄(𝑎𝑚)
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Practical Implementation of Approximation

• Smooth functions of 𝜔 or 𝜈 are further approximated using simpler alternatives
• We use a piecewise polynomial to approximate each such smooth function

• Polynomials can be easily described, e.g., only their coefficients and degrees need be stored

• Evaluation computations are relatively easy, e.g., elementary addition and multiplication

• Different 𝑛 dependence gives different accuracy requirements
• E.g., approximation error in 𝐻 𝜔 gives error increasing in 𝑛 whereas 𝐺1 𝜔 gives decreasing error

• This gives rise to a tradeoff between accuracy and storage complexity

• Term selection and localization
• Based on target accuracy, certain terms can be eliminated

• E.g., when 𝑛 is large, terms scaled by    may be neglected

• Polynomial fitting can be localized to specific ranges of 𝑛

Function fitting and term selection

𝑛 𝐻 𝜔 , log 𝑉 (𝜔),
1

𝑛
𝐺1 𝜔log 𝑁(𝑛, 𝜔𝑛):

Piecewise polynomials

log 𝑁c (𝑛, 𝜔𝑛):𝑛 𝐻sat 𝜔 , 𝐺0 𝜔 , 𝐺0
s 𝜈 ,

1

𝑛
𝐺1

2

s 𝜈 ,
1

𝑛
𝐺1 𝜔 ,

1

𝑛
𝐺1

s 𝜈

Piecewise polynomials

Example approximation regions for log 𝑁c(𝑛, 𝜔𝑛)
for 𝑚 = 8, 𝜔 < 𝜔u and 1 ≤ 𝑛 ≤ 1024

1

𝑛
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Practical Implementation of Approximation
Numerical evaluation for piecewise polynomial approximation of log 𝑁c (𝒏, 𝑬)

• High-accuracy example for 𝑚 = 8
• Left figure shows a high-accuracy example with a 

worst-case absolute error 0.0007 for 32 ≤ 𝑛 ≤ 1024
• The total number of polynomial pieces is 152

• All polynomials are of degree 3

• The fixed storage of quantized polynomial coefficients are 1824

bytes, with 3 bytes per coefficient

• Low-accuracy example for 𝑚 = 8
• Right figure shows a low-accuracy example with a 

worst-case absolute error 0.0014 for 32 ≤ 𝑛 ≤ 1024
• The total number of polynomial pieces is 67 

• All polynomials are of degree 3 

• The fixed storage of quantized polynomial coefficients are 804 

bytes, with 3 bytes per coefficient

Fitting error log 𝑁c(𝑛, 𝐸) − log 𝑁c(𝑛, 𝐸)
by piecewise polynomial approximation
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Performance Evaluation

• Rate loss comparison with CCDM
• We use rate loss as an indicator for performance evaluation

• Similar as the previous case, our methods show much smaller rate loss compared with CCDM, especially 

at small-to-medium lengths

Rate loss comparison for a target MB over 𝓐 = {𝟏, 𝟑, 𝟓, 𝟕, 𝟗, 𝟏𝟏, 𝟏𝟑, 𝟏𝟓} (ASK-16/QAM-256)

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, pp. 430–434, Jan. 2016

𝑅loss = H 𝑃MB −
𝑘

𝑛

Target MB distribution has 
parameter 𝜈 = 0.013 with

𝑃MB 1
𝑃MB 3
𝑃MB 5

 𝑃MB 7
𝑃MB 9

𝑃MB 11
𝑃MB 13
𝑃MB 15

= 0.2586
= 0.2326
= 0.1881
= 0.1369 
= 0.0896
= 0.0527 
= 0.0279 
= 0.0136
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Performance Evaluation

• Achievable information rate (AIR) comparison for the AWGN channel
• The figures show SNR gap to capacity as a function of AIR for ASK-8 and ASK-16 (𝑛 ∈ {256, 512})

Achievable information rate to capture DM rate loss

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun., vol. 63, pp. 4651–4665, Dec. 2015

ASK-8 ASK-16

0.2 dB gain over CCDM
at AIR 2.2 bits/symbol
for 𝑛 = 256

0.53 dB gain over CCDM
at AIR 3.1 bits/symbol
for 𝑛 = 256

0.7 dB gain over uniform ASK-8
at AIR 2.2 bits/symbol
for 𝑛 = 256

0.95 dB gain over uniform ASK-16
at AIR 3.1 bits/symbol
for 𝑛 = 256
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Conclusion

• We introduced two classes of energy-based arithmetic coding (AC) methods for PAS, respectively termed 

direct AC-DM and peeling-based AC-DM

• We equipped such methods with efficient approximation of key involved energy-based quantities 𝑁 and 𝑁c

• We introduced means for determining the number of uniquely encodable bits and calibrating the rate loss

• Our methods establish a theoretical and algorithmic foundation for performing fixed-to-fixed invertible DM 

for PAS systems of varying sizes and practically realizing nearly-optimal shaping gain at low complexity

Two classes of energy-based AC methods

Foundation and principles

Approximate solution

Direct AC-DM: Lexicography

Foundation and principles

Approximate solution

Peeling-Based AC-DM: Energy, Composition
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