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Quantum Key Distribution (QKD)

@ Quantum Communication
e Takes advantage of the laws of quantum
physics to convey data
e Rapidly growing interest and investment; 6G

technology
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Quantum Key Distribution (QKD)

@ Quantum Communication

e Takes advantage of the laws of quantum
physics to convey data
. . . -~
e Rapidly growing interest and investment; 6G P, L)
technology
e One-time-pad encryption is perfectly secure
but it requires one time random key
generation, which is hard to implement

e Quantum Key Distribution (QKD) (Gisin '02) E—

. . communication
e Offers a physically secure way for effectively channel
sharing an encryption key over a quantum

communication channel -

e We focus on Discrete Variable (DV)-QKD Arh ﬂ
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QKD Protocol

@ A QKD protocol consists of two phases:
1) Quantum Phase 2) Classical Phase

Quantum Phase: Key Generation

e Alice and Bob use a quantum communication
channel to generate a set of raw keys:

— may disagree at certain positions

Classical Phase: Post-post processing of raw keys

-~
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Quantum

communication
channel
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e Involves communication over a classical channel (public to everyone)

1) Information reconciliation: Alice and Bob correct the errors in the raw

keys via communication over the public channel

2) Verification: Alice and Bob verify if the reconciled keys indeed match
3) Privacy Amplification: Reduce the information obtained by

eavesdropper Eve to arrive at final secret keys

(via hashing and compression)

| Error Correction Coding is applied to the information reconciliation phase.
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Time-Bin QKD Protocol: Promise of High Key Rates

@ Energy-time entangled photons are used in the quantum phase (Zhong '15)
» Entangled photons pairs are sent to Alice and Bob
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@ Energy-time entangled photons are used in the quantum phase (Zhong '15)

» Entangled photons pairs are sent to Alice and Bob
» Alice and Bob record the quantized arrival time of photons
» Pulse Position Modulation: Each photon pair corresponds to a

non-binary symbol

Multiple bits per entangled photon pair aim to provide a higher secure key rate.
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@ The arrival times of photons received by
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Information Reconciliation

Photon Generator
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Information Reconciliation

@ The arrival times of photons received by

Photon Generator

regarded as two random sequences
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Information Reconciliation

Photon Generator

@ The arrival times of photons received by '
Alice and Bob are quantized and can be ﬂ Photon Pairs  emy
)

regarded as two random sequences

The discrepancies in the arrival times ~ Z[ 7 Tt

result in differences between the
quantized sequences Quantizer Quantizer

— modeled as a QKD channel and T odimma’
corrected using ECC ,_______J

Alice sends syndrome bits to Bob over
; —-[ Encoder ]—[ Decoder]
public channel

> /\ Times
~ \/Timcstamps

@ Bob decodes Alice's sequence from the ¥ lx

sequence he receives and the parities from [ decoding is successful, Alice

Alice using syndrome decoding. and Bob share the same key.

Any information sent over the public channel is seen by Eve and will reduce
the final key length (due to privacy amplification)
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Earliest Reconciliation Protocol: Cascade

@ One of the earliest proposed schemes for information reconciliation (binary)

Figure: https://cascade-python.readthedocs.io/en/latest/protocol.html
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Earliest Reconciliation Protocol: Cascade

@ One of the earliest proposed schemes for information reconciliation (binary)

@ Involves multiple iterations, where each iteration corrects multiple bit errors
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Cascade iteration 2
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@ During each iteration, the raw key is shuffled and divided into top-level

blocks

e Size of the top-level block depends on the iteration number and the

estimated quantum bit-error rate

Figure: https://cascade-python.readthedocs.io/en/latest/protocol.html

L. Dolecek (UCLA) Coding for QKD

[ Telol e JoToTo o ot [o]rnalreconciiated key

MSCT 2024

7/35



Cascade

o Generalizations:

L. Dolecek (UCLA) Coding for QKD



Cascade

o Generalizations:

e Use other channel codes instead of single parities, e.g., Hamming codes
[Buttler '03]
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Cascade

@ Generalizations:
e Use other channel codes instead of single parities, e.g., Hamming codes

[Buttler '03]
e Cascade for high-dimensional data (non-binary) [Mueller "23]

@ High reconciliation efficiency, but inefficient due to many
communication rounds between Alice and Bob

o Additionally, the codes do not use any properties specific to the QKD
channel

Can LDPC codes cognizant of the properties of the QKD channel
improve key rates ?
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Energy time (ET)-QKD Channel: Overview

@ The time domain is divided into frames, each frame contains 2¢ bins:
each arrival-time is represented by a ¢-bit symbol

@ Experimental Set-up: Wong Group at UCLA.
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@ The time domain is divided into frames, each frame contains 2¢ bins:
each arrival-time is represented by a ¢-bit symbol
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@ The time domain is divided into frames, each frame contains 2¢ bins:
each arrival-time is represented by a ¢-bit symbol

@ Only the frames where both Alice and Bob have exactly one detection

are kept
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Energy time (ET)-QKD Channel: Overview
@ The time domain is divided into frames, each frame contains 27 bins:
each arrival-time is represented by a ¢-bit symbol

@ Only the frames where both Alice and Bob have exactly one detection
are kept

@ Complex error sources: timing jitter errors, detector downtime, dark
counts, photon loss

Timestamps
ﬂ [®Alica
E
a )
i Jitter
i sSe————— e — m———————————
X v v Frame Loss
T R A R Carrect
0o 1 2 29 -1 D) 29 -1
‘ (BT Multi Détection 1
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5 17 28 40 51 63 74 86 97 109 121 132 143 155 167 178 189 201 213 224 235 247 258

Time(ns)

@ Experimental Set-up: Wong Group at UCLA.
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An Example

Al —pt—p e

00 X 01 01 — 000101
Bob — -]

00 10 10 11 — 001011

o In the leftmost frame, both Alice and Bob map their result to '00" (the
leftmost bin is occupied in both). Bit extraction is successful despite a slight
arrival jitter.

Figure credit: E. Soljanin.
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An Example

Al —pt—p e

00 X 01 01 — 000101
Bob — -]

00 10 10 11 — 001011

@ In the second frame, Alice detects two arrivals, with the spurious one due
to dark counts. While Bob initially can map his result to '01" for his second
frame, upon receiving information from Alice that this frame is invalid, he
too discards it.

Figure credit: E. Soljanin.
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An Example

Al —pt—p e

00 X 01 01 — 000101
Bob — -]

00 10 10 11 — 001011

@ In the third frame, both Alice and Bob observe a single arrival. However,
due to timing jitter, the two arrivals fall into adjacent bins. Alice maps her
result to '01" whereas Bob maps his to '10’, resulting in a 2-bit discrepancy.

Figure credit: E. Soljanin.
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An Example

Alice e

00 X 01 01 — 000101
Bob I.} [ I I }o} I ! :o: I I I :o{

00 10 10 11 — 001011

@ In the rightmost frame, Alice and Bob each again detect a single arrival.
In this example, two arrivals are due to dark counts and are uncorrelated
(unbeknownst to Alice and Bob at this point). Alice maps her result to '01'
and Bob his to '11".

Figure credit: E. Soljanin.
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Information Reconciliation: Source Coding with Side
Information (Elkouss '09)

@ Encoding

e Sequences received by Alice and Bob
are XV and YV respectively

XV Yy
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@ Encoding
e Sequences received by Alice and Bob

are XV and YV respectively
e Alice send parities R = HX" to Bob
over a public channel xv vy

. . . — gxN 9]
e H is a parity check matrix of an R =HX PHS

LDPC code

@ Decoding at Bob's Side

e The syndrome S = HYN — R= H(Y"N — X¥) = HA should be zero
if XY =Y, which can be used to decode YV by belief propagation
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Information Reconciliation: Source Coding with Side
Information (Elkouss '09)

e Encoding
e Sequences received by Alice and Bob
are X" and YV respectively
e Alice send parities R = HX" to Bob
over a public channel xv vy

e H is a parity check matrix of an R=Hx" PHS

LDPC code

@ Decoding at Bob's Side

e The syndrome S = HYN — R= H(Y"N — X¥) = HA should be zero
if XY =Y, which can be used to decode YV by belief propagation

Parity bits are visible to Eve.
Need to balance code rate and its error correction capability.
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Prior related work

Classical design approaches

e LDPC coding (Kasai '10, Mao '19, Milicevic '17, 18, Muller '23),
Polar coding (Jouguet '14, Fang '22)

@ Optimization centers on high-noise — low code rate for canonical
noise channels
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Prior related work

Classical design approaches
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Prior related work

Classical design approaches
e LDPC coding (Kasai '10, Mao '19, Milicevic '17, 18, Muller '23),
Polar coding (Jouguet '14, Fang '22)

@ Optimization centers on high-noise — low code rate for canonical
noise channels

QKD channel-aware approach
e Multilevel binary LDPC codes (Zhou '13)

> Implemented and tested in experimental systems (Zhong '15, Chang
'23, Chang '24)
» Random code constructions

Next: Information Reconciliation using LDPC codes designed
based on the properties of the QKD channel
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¥ Measurement
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@ Mixture of Gaussian and uniform noise om0
e Local errors: Gaussian distribution oo
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errors in photon detection. |
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ET-QKD Channel: Details

QKD Channel:

° PY|X(y|x) YIRS {Oalaq_ 1}
@ Can be derived from experiments
@ Mixture of Gaussian and uniform noise

e Local errors: Gaussian distribution i
- due to timing jitters and synchronization &
errors in photon detection. |

e Global errors: Uniform distribution
- due to channel losses, and accidental
concurrent detections of stray photons

e The SNR in practice is very low resulting in
high error rates

L. Dolecek (UCLA) Coding for QKD
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Outline

3. NB-LDPC codes for Quantum Key Distribution
@ Preliminaries
@ Channel code design
@ Sequential Decoding and Interactive Communication
@ Privacy Amplification-Aware LDPC Code Design
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Towards a New Solution: Fully Non-Binary (FNB) Protocol
for IR

Alice: T

ﬂx YA!A

Alice Bob
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Alice:
e Send syndromes S = HX to Bob
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Towards a New Solution: Fully Non-Binary (FNB) Protocol

for IR
Alice:
e Send syndromes S = HX to Bob

e H is a parity check matrix of a
Non-Binary LDPC code in GF(29)M*¥~

Bob:

e Bob decodes X using S, H, side
information Y and QKD channel Py |x
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Towards a New Solution: Fully Non-Binary (FNB) Protocol

for IR
Alice:
e Send syndromes S = HX to Bob

N

e H is a parity check matrix of a
Non-Binary LDPC code in GF(29)M*¥~

4

Bob: Alice

e Bob decodes X using S, H, side
information Y and QKD channel Py |x

Reconciled Keys: X and X

IR rate = q(1 — FER)~5M

L. Dolecek (UCLA) Coding for QKD
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Towards a New Solution: Fully Non-Binary (FNB) Protocol
for IR

Alice:
e Send syndromes S = HX to Bob

e H is a parity check matrix of a
Non-Binary LDPC code in GF(29)M*x¥ -
ﬂ X s V| am
Bob: Alice =HX Bob
. . s,HY

e Bob decodes X using S, H, side [ LDPC ] LDPC
information Y and QKD channel Py |x Encoder [ Decoder ]

Reconciled Keys: X and X X ReconciledKeys X

IR rate = q(1 — FER)~5M

@ IR rate depends on both the coding rate (%52 ) and FER of the code
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Towards a New Solution: Fully Non-Binary (FNB) Protocol

for IR
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Towards a New Solution: Fully Non-Binary (FNB) Protocol

for IR
GIF(2%) GIF(29)

1
0.8

(O] (O]

E E 0.6 ﬁ

o x 0.4 LL
0.2

0.25 0.3 0.35 0.2 0.25 0.3 0,3(5)
Coding Rate Coding rate

IR rate = q(1 — FER)Y5M

N=MY and FER of the code

@ IR rate depends on both the coding rate (
@ Maximum in the IR rate occurs for a relatively large value of FER

(~1—10%)
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Binary vs. Non-Binary LDPC codes
Binary LDPC codes:
o Multi-Level Coding (MLC) (Zhou '13):
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Binary vs. Non-Binary LDPC codes
Binary LDPC codes:

o Multi-Level Coding (MLC) (Zhou '13): Split symbols into bit layers
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Binary vs. Non-Binary LDPC codes
Binary LDPC codes:

o Multi-Level Coding (MLC) (Zhou '13): Split symbols into bit layers

@ Reconcile each layer using binary LDPC codes
@ Low complexity and fast decoding algorithms

-~
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Binary vs. Non-Binary LDPC codes

Binary LDPC codes:

Multi-Level Coding (MLC) (Zhou '13): Split symbols into bit layers
Reconcile each layer using binary LDPC codes

Low complexity and fast decoding algorithms

Low complexity for key generation

X Y
L1 1i1 L1 L1i1 1 L1
5 1 2 20-1 0o 1 2 29-1
X Y
l Binary Conversion
Xy > HiXy Decode X,
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Binary vs. Non-Binary LDPC codes
Binary LDPC codes:

Multi-Level Coding (MLC) (Zhou '13): Split symbols into bit layers
Reconcile each layer using binary LDPC codes

Low complexity and fast decoding algorithms

Low complexity for key generation
Sequential decoding among layers

i
X Y
L1 11 | | I I | |
5 1 2 20-1 o 1 2 291
X Y
l Binary Conversion
Xy H;Xq Decode
. ™
X H3X
: o w I

X,
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Binary vs. Non-Binary LDPC codes
Binary LDPC codes:
e Multi-Level Coding (MLC) (Zhou '13): Split symbols into bit layers
@ Reconcile each layer using binary LDPC codes
@ Low complexity and fast decoding algorithms
@ Low complexity for key generation
@ Sequential decoding among layers

FNB protocol: Non-Binary LDPC codes

L. Dolecek (UCLA) Coding for QKD MSCT 2024 15 /35



Binary vs. Non-Binary LDPC codes
Binary LDPC codes:
e Multi-Level Coding (MLC) (Zhou '13): Split symbols into bit layers
@ Reconcile each layer using binary LDPC codes
@ Low complexity and fast decoding algorithms
@ Low complexity for key generation
@ Sequential decoding among layers

FNB protocol: Non-Binary LDPC codes
@ Have higher IR rates due to stronger NB-LDPC codes

L. Dolecek (UCLA) Coding for QKD MSCT 2024 15 /35



Binary vs. Non-Binary LDPC codes
Binary LDPC codes:
e Multi-Level Coding (MLC) (Zhou '13): Split symbols into bit layers
@ Reconcile each layer using binary LDPC codes
@ Low complexity and fast decoding algorithms
@ Low complexity for key generation
@ Sequential decoding among layers

FNB protocol: Non-Binary LDPC codes
@ Have higher IR rates due to stronger NB-LDPC codes

@ High complexity of decoding when the symbol sizes are large

L. Dolecek (UCLA) Coding for QKD MSCT 2024 15 /35



Binary vs. Non-Binary LDPC codes
Binary LDPC codes:
e Multi-Level Coding (MLC) (Zhou '13): Split symbols into bit layers
@ Reconcile each layer using binary LDPC codes
@ Low complexity and fast decoding algorithms
@ Low complexity for key generation
@ Sequential decoding among layers

FNB protocol: Non-Binary LDPC codes
@ Have higher IR rates due to stronger NB-LDPC codes

@ High complexity of decoding when the symbol sizes are large

Our work:
1. Flexible protocol for IR called Non-Binary Multi-Level Coding NB-MLC(a),
which is parameterized by an integer a > 0

L. Dolecek (UCLA) Coding for QKD MSCT 2024 15 /35



Binary vs. Non-Binary LDPC codes
Binary LDPC codes:
e Multi-Level Coding (MLC) (Zhou '13): Split symbols into bit layers
@ Reconcile each layer using binary LDPC codes
@ Low complexity and fast decoding algorithms
@ Low complexity for key generation
@ Sequential decoding among layers

FNB protocol: Non-Binary LDPC codes
@ Have higher IR rates due to stronger NB-LDPC codes

@ High complexity of decoding when the symbol sizes are large

Our work:
1. Flexible protocol for IR called Non-Binary Multi-Level Coding NB-MLC(a),
which is parameterized by an integer a > 0

e Utilizes specialized NB-LDPC codes in GF(2%), 1 <a < g¢q

L. Dolecek (UCLA) Coding for QKD MSCT 2024 15 /35



Binary vs. Non-Binary LDPC codes
Binary LDPC codes: | a =1
e Multi-Level Coding (MLC) (Zhou '13): Split symbols into bit layers
@ Reconcile each layer using binary LDPC codes
@ Low complexity and fast decoding algorithms
@ Low complexity for key generation
@ Sequential decoding among layers

FNB protocol: Non-Binary LDPC codes
@ Have higher IR rates due to stronger NB-LDPC codes

@ High complexity of decoding when the symbol sizes are large

Our work:
1. Flexible protocol for IR called Non-Binary Multi-Level Coding NB-MLC(a),
which is parameterized by an integer a > 0

e Utilizes specialized NB-LDPC codes in GF(2%), 1 <a < g¢q

L. Dolecek (UCLA) Coding for QKD MSCT 2024 15 /35



Binary vs. Non-Binary LDPC codes
Binary LDPC codes: | a =1
e Multi-Level Coding (MLC) (Zhou '13): Split symbols into bit layers
@ Reconcile each layer using binary LDPC codes
@ Low complexity and fast decoding algorithms
@ Low complexity for key generation
@ Sequential decoding among layers

FNB protocol: Non-Binary LDPC codes | a = ¢
@ Have higher IR rates due to stronger NB-LDPC codes

@ High complexity of decoding when the symbol sizes are large

Our work:
1. Flexible protocol for IR called Non-Binary Multi-Level Coding NB-MLC(a),
which is parameterized by an integer a > 0

e Utilizes specialized NB-LDPC codes in GF(2%), 1 <a < g¢q

L. Dolecek (UCLA) Coding for QKD MSCT 2024 15 /35



Binary vs. Non-Binary LDPC codes
Binary LDPC codes: | a =1
e Multi-Level Coding (MLC) (Zhou '13): Split symbols into bit layers
@ Reconcile each layer using binary LDPC codes
@ Low complexity and fast decoding algorithms
@ Low complexity for key generation
@ Sequential decoding among layers

FNB protocol: Non-Binary LDPC codes | a = ¢
@ Have higher IR rates due to stronger NB-LDPC codes

@ High complexity of decoding when the symbol sizes are large

Our work:
1. Flexible protocol for IR called Non-Binary Multi-Level Coding NB-MLC(a),
which is parameterized by an integer a > 0

2. Interl