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Quantum Key Distribution (QKD)

Quantum Communication
• Takes advantage of the laws of quantum

physics to convey data
• Rapidly growing interest and investment; 6G

technology

• One-time-pad encryption is perfectly secure
but it requires one time random key
generation, which is hard to implement

Quantum Key Distribution (QKD) (Gisin ’02)

• Offers a physically secure way for effectively
sharing an encryption key over a quantum
communication channel

• We focus on Discrete Variable (DV)-QKD
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QKD Protocol
A QKD protocol consists of two phases:

1) Quantum Phase 2) Classical Phase

Quantum Phase: Key Generation
• Alice and Bob use a quantum communication

channel to generate a set of raw keys:

→ may disagree at certain positions

Classical Phase: Post-post processing of raw keys

• Involves communication over a classical channel (public to everyone)

1) Information reconciliation: Alice and Bob correct the errors in the raw
keys via communication over the public channel
2) Verification: Alice and Bob verify if the reconciled keys indeed match
3) Privacy Amplification: Reduce the information obtained by
eavesdropper Eve to arrive at final secret keys
(via hashing and compression)

Error Correction Coding is applied to the information reconciliation phase.
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Time-Bin QKD Protocol: Promise of High Key Rates

Energy-time entangled photons are used in the quantum phase (Zhong ’15)
I Entangled photons pairs are sent to Alice and Bob

I Alice and Bob record the quantized arrival time of photons
I Pulse Position Modulation: Each photon pair corresponds to a

non-binary symbol

Multiple bits per entangled photon pair aim to provide a higher secure key rate.
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Information Reconciliation

The arrival times of photons received by
Alice and Bob are quantized and can be
regarded as two random sequences

The discrepancies in the arrival times
result in differences between the
quantized sequences

→ modeled as a QKD channel and
corrected using ECC

Alice sends syndrome bits to Bob over
public channel

Bob decodes Alice’s sequence from the
sequence he receives and the parities from
Alice using syndrome decoding.

If decoding is successful, Alice
and Bob share the same key.

Any information sent over the public channel is seen by Eve and will reduce
the final key length (due to privacy amplification)
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Earliest Reconciliation Protocol: Cascade
One of the earliest proposed schemes for information reconciliation (binary)

Involves multiple iterations, where each iteration corrects multiple bit errors

During each iteration, the raw key is shuffled and divided into top-level
blocks

• Size of the top-level block depends on the iteration number and the
estimated quantum bit-error rate

Figure: https://cascade-python.readthedocs.io/en/latest/protocol.html
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Cascade

Generalizations:

• Use other channel codes instead of single parities, e.g., Hamming codes
[Buttler ’03]

• Cascade for high-dimensional data (non-binary) [Mueller ’23]

High reconciliation efficiency, but inefficient due to many
communication rounds between Alice and Bob
Additionally, the codes do not use any properties specific to the QKD
channel

Can LDPC codes cognizant of the properties of the QKD channel
improve key rates ?
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Energy time (ET)-QKD Channel: Overview
The time domain is divided into frames, each frame contains 2q bins:
each arrival-time is represented by a q-bit symbol

Only the frames where both Alice and Bob have exactly one detection
are kept
Complex error sources: timing jitter errors, detector downtime, dark
counts, photon loss

Experimental Set-up: Wong Group at UCLA.
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An Example

In the leftmost frame, both Alice and Bob map their result to ’00’ (the
leftmost bin is occupied in both). Bit extraction is successful despite a slight
arrival jitter.

Figure credit: E. Soljanin.
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An Example

In the second frame, Alice detects two arrivals, with the spurious one due
to dark counts. While Bob initially can map his result to ’01’ for his second
frame, upon receiving information from Alice that this frame is invalid, he
too discards it.

Figure credit: E. Soljanin.
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An Example

In the third frame, both Alice and Bob observe a single arrival. However,
due to timing jitter, the two arrivals fall into adjacent bins. Alice maps her
result to ’01’ whereas Bob maps his to ’10’, resulting in a 2-bit discrepancy.

Figure credit: E. Soljanin.
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An Example

In the rightmost frame, Alice and Bob each again detect a single arrival.
In this example, two arrivals are due to dark counts and are uncorrelated
(unbeknownst to Alice and Bob at this point). Alice maps her result to ’01’
and Bob his to ’11’.

Figure credit: E. Soljanin.
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Information Reconciliation: Source Coding with Side
Information (Elkouss ’09)

Encoding
• Sequences received by Alice and Bob

are XN and Y N respectively

• Alice send parities R = HXN to Bob
over a public channel

• H is a parity check matrix of an
LDPC code

Decoding at Bob’s Side

• The syndrome S = HY N −R = H(Y N −XN ) = H∆ should be zero
if XN = Y N , which can be used to decode Y N by belief propagation

Parity bits are visible to Eve.
Need to balance code rate and its error correction capability.
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Prior related work

Classical design approaches
LDPC coding (Kasai ’10, Mao ’19, Milicevic ’17, 18, Muller ’23),
Polar coding (Jouguet ’14, Fang ’22)
Optimization centers on high-noise → low code rate for canonical
noise channels

QKD channel-aware approach
Multilevel binary LDPC codes (Zhou ’13)

I Implemented and tested in experimental systems (Zhong ’15, Chang
’23, Chang ’24)

I Random code constructions

Next: Information Reconciliation using LDPC codes designed
based on the properties of the QKD channel
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ET-QKD Channel: Details

QKD Channel:
PY |X(y|x) : x, y ∈ {0, 1, . . . q − 1}

Can be derived from experiments
Mixture of Gaussian and uniform noise

• Local errors: Gaussian distribution

- due to timing jitters and synchronization
errors in photon detection.

• Global errors: Uniform distribution

- due to channel losses, and accidental
concurrent detections of stray photons

• The SNR in practice is very low resulting in
high error rates
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Outline

1. Background and Motivation

2. System Model

3. NB-LDPC codes for Quantum Key Distribution
Preliminaries
Channel code design
Sequential Decoding and Interactive Communication
Privacy Amplification-Aware LDPC Code Design

4. Concluding Remarks and Future Outlook

L. Dolecek (UCLA) Coding for QKD MSCT 2024 13 / 35



Towards a New Solution: Fully Non-Binary (FNB) Protocol
for IR
Alice:

• Send syndromes S = HX to Bob

• H is a parity check matrix of a
Non-Binary LDPC code in GF(2q)M×N

Bob:

• Bob decodes X using S,H, side
information Y and QKD channel PY |X

Reconciled Keys: X and X̂

IR rate = q(1− FER)N−M
N

IR rate depends on both the coding rate (N−MN ) and FER of the code

Maximum in the IR rate occurs for a relatively large value of FER
(∼ 1− 10%)
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Binary vs. Non-Binary LDPC codes
Binary LDPC codes:

| a = 1

Multi-Level Coding (MLC) (Zhou ’13):

Split symbols into bit layers
Reconcile each layer using binary LDPC codes
Low complexity and fast decoding algorithms
Low complexity for key generation
Sequential decoding among layers
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NB-MLC(a) Protocol

For given a, let q = ab+ r, r < a

Split X into b symbols in GF(2a)
and 1 symbol in GF(2r)

Apply layered reconciliation on the
split symbols
Let number of layers T = d qae.
Bitsize of each layer
αi = a, 1 ≤ i ≤ b and αb+1 = r.
Thus, q =

∑T
i=1 αi.
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NB-LDPC Code design
Irregular LDPC codes

Improves the FER performance of the code

Can be characterized using their VN and CN degree distributions L(x) and
P (x), respectively

L(x) =
∑
d

Ldx
d P (x) =

∑
d

Pdx
d

• Ld: fraction of VNs of degree d, Pd: fraction of CNs of degree d

Example:
• L(x) = 3

7x+ 3
7x

2 + 1
7x

3

• P (x) = x4

Code Rate R = 1− L′(1)
R′(1)

Our work: we optimize degree distribution L(x), P (x)
for the QKD channel to result in large IR rates
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Degree Distribution Optimization using Differential
Evolution

General procedure to optimize degree distribution (Shokrollahi ’00):

Generally
The performance predictor is the code threshold (low complexity to
compute)
L(x) is optimized for a fixed code rate R
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Joint Rate and Degree Distribution Optimization (JRDO)

IR rate =
∑T

i=1(1−FERi) ∗Ratei ∗αi

γi = P (Y = y,X1 = x1, . . . , Xi−1 = xi−1|Xi = xi)

Can be derived from the QKD channel
PY |X(Y = y|X = x)
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• FER can be obtained with low complexity by Monte-Carlo simulation of a
small number of codewords
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Sequential Decoding and Interactive Communication

Error propagation and current remedy:

A decoding error in one layer → decoding error in subsequent layers

Interactive communication used to mitigate error propagation (Zhou ’13)

Verify decoded output using hashes (Federov ’18)

Verification fails → Alice sends Bob the actual symbol for subsequent
decoding

Decoding and interactive communication is sequential
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Interleaved Decoding and Communication (IDC)
Idea: Use interactive communication of the later layers to decode previous layers

Maximum number of decoding iterations: ∆,

∆1 ≤ ∆

Additional side information aids decoding and help improve the IR rate (even
with error propagation)
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Simulation Results: IR vs. latency as a choice of parameter
a

Set-up: Wong Group @ UCLA. 2000 postprocessed frames.

a

IR
R
at
e

q best a

4 3
5 3
6 4
7 3

The IR rate is non-monotonic in a and has a maximum when a is strictly
between 1 and q.

Large a =⇒ stronger NB-LDPC codes =⇒ lower FER and better IR rate

Small a =⇒ more layers =⇒ larger IR rate due to sum IR rate formula
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Simulation Results: IR vs. latency as the choice of
parameter a

Latency (in ms)
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Latency becomes significantly large as a becomes large (close to q)

Latency is non-monotonic in a: since as a increases, the increase in decoding
complexity is offset by the decrease in the number of layers

Best trade-off between IR rate and latency is obtained for a small value of a
(3 or 4)
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Simulation Results: Comparison with Classical Schemes

32 bins per frame → q = 5.

Binwidth (in ps)

IR
R
at
e

Improvement due to a = 1→ a = 3

Improvement due to using JRDO-LDPC codes

Overall, JRDO-LDPC codes combined with NB-MLC with a small a result in
the largest IR rates (effectively uses one code over GF (8) and one code over
GF (4))
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Performance Comparison: Benefits of Interleaved Decoding
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IDC protocol results in higher IR rates compared to the conventional
SDC protocol
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The Overall Comparison
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Overall, our techniques result in around 40− 60% improvement in IR
rates compared to the MLC scheme (prior state of the art).
Asymptotic limit of a simplified (better) channel is around 2.1 for
q = 5 and 1.8 for q = 4.
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Privacy Amplification-Aware LDPC Code Design

Privacy Amplification
compresses the common string
between Alice and Bob whose
length is dependent on the
information Eve has (Bennet
’88)

Question: Depending on the
information Eve has, do we need
all of X in order to extract K?

No

Privacy 
Amplification
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Revisit the Full Non-Binary Example

Assume that H can be partitioned
into two sub-matrices
H = [H1,H2] such that H2 is
m×m and is full rank.

Then,

S = HX = H1X1 + H2X2

=⇒ X2 = (H2)−1 (S−H1X1)

Since X2 is a function of X1,
H(X|S) = H(X1|S).

Key Observations

We only need to decode X1 successfully to do Privacy Amplification and get
K.

(Similar to Systematic Decoding)

There may be multiple subsets that satisfy this property.
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Utilizing Subset Decoding

Possible Coding Schemes

MDS codes:

I Pros: Can select a lot of subsets
I Cons: Requires finite fields that scale with code length and have

complex soft-decoding algorithms
LDPC codes:

I Pros: Efficient soft-decoding algorithms and fixed finite field size
I Cons: Determining subsets in the code that satisfy desired property

can be difficult

Our Solution - Block-MDS (BMDS) QC-LDPC codes:

I Structured code construction that guarantees the required subsets on a
block matrix level while still having the benefits of LDPC codes
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Construction of BMDS QC-LDPC codes

Lifting

Main Result
A binary regular QC-LDPC code with column weight γ, row weight κ, and
girth γ + 2 can be transformed into a non-binary BMDS code with finite
field size at least κ, for a particular prime choice of the lifting factor.
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Full Codeword Decoding vs Subset Decoding Simulations

All codes have girth 10, length
of approximately 2000, and
perform operations in GF(8)

Channel is a q-ary symmetric
channel with transition
probability p
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Outline

1. Background and Motivation

2. System Model

3. NB-LDPC codes for Quantum Key Distribution
Preliminaries
Channel code design
Sequential Decoding and Interactive Communication
Privacy Amplification-Aware LDPC Code Design

4. Concluding Remarks and Future Outlook

L. Dolecek (UCLA) Coding for QKD MSCT 2024 31 / 35



Key Takeaways

High-dimensional QKD solutions are
becoming critical to quantum
communications, also for 6G

Challenge: Physical constraints, high noise, presence of eavesdroppers.
Key Insights: Novel code design strategies using source coding with
side information of graph codes.

I Tools based on well-understood set-ups e.g., data storage, do not apply.
I Code designs that operate in a low SNR regime; refined channel model
I Domain-specific metrics lead to new theoretical insights

Key Result: Novel non-binary codes (Mitra ’24, Tauz ’24)
I Research supported by NSF-QuIC-TAQS no. 2137984 and NSF-FET

no. 2008728.
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Advances in Technology and Suggested Research Directions

High-dimensional energy-time QKD promises unprecedented key rates.
To reach this promise, and in tandem with experimental advances, it
will be necessary to investigate:

I Design of codes tailored to the specifics of the QKD channels (this
work)

I Alternative coding solutions (spatial, polar etc.); low-latency decoding
algorithms.

I Careful mathematical modeling of the appropriate channel models, and
relevant capacity-style bounds and finite-length analysis (cf. Boutros
and Soljanin ’23).

I Practical joint modulation and coding schemes (cf. Karimi ’20)
I Relevant attack models and security proofs for them.

Special issue on Quantum Information
Science, 2023, including L. Dolecek and
E. Soljanin: a primer on time-bin QKD
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Advances in Technology and Suggested Research Directions

Frequency Combs. Due to their frequency scaling and long-term
coherence, they offer a new, more robust platform for photon
generation, (Lee ’18).

Hyper-entanglement based QKD. Information is represented on
multiple bases (in addition to the single basis of the time bin QKD,
also polarization and angular momentum), (Chang ’21).
Hybrid QKD schemes. Simultaneously uses both discrete variable
and continuous variable QKD, (Djordjevic ’20).
Quantum networks. Secure multi-party communication using
efficient conference key agreement multi-party protocol, (Proietti ’21).

Each of these technologies will benefit from new studies in channel coding
and related disciplines.
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Selected References on Coding and Modulation for QKD

• (Mitra ’24) D. Mitra et al., “Efficient Information Reconciliation in Quantum Key
Distribution Systems Using Informed Design of Non-Binary LDPC Codes," QIP, 2024.

• (Dolecek & Soljanin ’23) L. Dolecek and E. Soljanin “QKD Based on Time-Entangled
Photons and its Key-Rate Promise," IEEE BITS Magazine, 2023.

• (Tauz ’24) L. Tauz, D. Mitra, J. Shreekumar, M. C. Sarihan, C. W. Wong, and L.
Dolecek, “Block-MDS QC-LDPC Codes for Information Reconciliation in Key
Distribution," in review.

• (Birnie ’23) C. Birnie, C. Chang, and E. Soljanin, “Information Rates With Non Ideal
Photon Detectors in Time-Entanglement Based QKD," IEEE Trans. on Communications,
2023.

• (Soljanin ’20) E. Soljanin, “Quantum Information Processing: An Essential Primer", IEEE
JSAIT, 2020.

• (Boutros and Soljanin ’ 23) J. Boutros and E. Soljanin, “Time-Entanglement QKD: Secret
Key Rates and Information Reconciliation Coding," IEEE Trans. on Communincations.

• (Elkouss ’09) D. Elkouss et al., “Efficient reconciliation protocol for discrete-variable
quantum key distribution,” IEEE ISIT, 2009.
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Verification after Information Reconciliation
The verification protocol is based on the following hash function
[Federov ’18]:

hk(X) = inttostr

[
n∑

i=1

strtoint(xi)k
i−1 mod p

]

Example:

Verification is achieved by matching the hash of the string X at Alice
and decoded (reconciled) string X̂ at Bob
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The verification protocol is based on the following hash function
[Federov ’18]:

hk(X) = inttostr

[
n∑

i=1

strtoint(xi)k
i−1 mod p

]
Example:

I Partition X into substrings of length blog2 pc
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