
Some Aspects on Hybrid Wideband Transceiver Design for mmWave Communication Systems

Marcin Iwanow¹², Nikola Vučić¹, Mario H. Castañeda¹, Jian Luo¹, Wen Xu,¹ and Wolfgang Utschick²

¹Huawei Technologies Duesseldorf GmbH, Munich, Germany ²Associate Institute for Signal Processing, Technische Universität München, Germany

Introduction	Problem Description	Relevant Work in the Literature
mmWave frequency ranges are considered to be a key enabler for extremely high throughput in 5G	Assuming perfect CSI, define the transmit and receive strategies for a multitap channel	 Narrowband solutions Exploiting channel spatial sparsity ^a Exploiting estimated channel subspaces ^b
 Principal issues to solve on the PHY layer: transmit/receive strategy, channel estimation/tracking, multi-user communication, waveform design, etc. Our focus: Broadband transceiver design in the hybrid beamforming architecture 	 Main issues: For practical solutions, the analog beamformers <i>P</i>_{k,A} as well as combiners <i>G</i>_{k,A} are constant across the subcarriers Computational complexity of solutions 	 Multicarrier solutions Codebook-based approach with suboptimal solutions more efficient than the exhaustive search.^c Sequential searching algorithm with limited feedback assumption. ^d Solution exploiting (slowly varying) second order statistics. ^e
		^a O. El Ayach et al. "Spatially Sparse Precoding in Millimeter Wave MIMO Systems" ^b H. Ghauch et al. "Subspace Estimation and Decomposition for Hybrid Analog-Digital Millimetre-Wave MIMO systems" ^c C. Kim et al. "Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems" ^d A. Alkhateeb et al. "Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems" ^e A. Adhikary et al. "Joint Spatial Division and Multiplexing for mm-Wave Channels"

System Model

$$\begin{split} \boldsymbol{H}_{k} &= \frac{1}{\sqrt{N_{\text{subc}}}} \sum_{d=0}^{D-1} \boldsymbol{H}[d] \exp\left(\frac{j2\pi k}{N_{\text{subc}}}d\right) \\ \tilde{\boldsymbol{s}}_{k} &= \boldsymbol{G}_{k,D}^{\text{H}} \boldsymbol{G}_{k,A}^{\text{H}} \boldsymbol{H}_{k} \boldsymbol{P}_{k,A} \boldsymbol{P}_{k,D} \boldsymbol{s}_{k} + \boldsymbol{G}_{k,D}^{\text{H}} \boldsymbol{G}_{k,A}^{\text{H}} \boldsymbol{\eta}_{k} \end{split}$$

Proposed Solution

- Based on the perfect (or estimated) CSI, design optimal linear precoders and combiners
- Decompose the optimal precoding/combining matrices jointly for a set of subcarriers Ω, such that the analog components are equal for all the subcarriers in the set
- For the decomposition, use the (heuristic) objective of minimizing the Frobenius norm of the error matrix

$$\begin{split} \left(\boldsymbol{P}_{\Omega,A}^{\star}, \boldsymbol{P}_{\Omega,D}^{\star} \right) &= \mathop{\arg\min}_{\boldsymbol{P}_{\Omega,A}, \boldsymbol{P}_{\Omega,D}} & \| \boldsymbol{P}_{\Omega}^{\star} - \boldsymbol{P}_{\Omega,A} \boldsymbol{P}_{\Omega,D} \|_{\mathsf{F}} \\ \text{s.t.} & \| \boldsymbol{P}_{\Omega,A} \boldsymbol{P}_{\Omega,D} \|_{\mathsf{F}}^{2} \leq |\Omega| \frac{P_{\mathsf{tx}}}{N_{\mathsf{subc}}}, \quad \boldsymbol{P}_{\Omega,A} \in \mathcal{P}_{\mathcal{A}} \end{split}$$

where

$$\begin{split} \boldsymbol{P}_{\Omega}^{\star} &= \begin{bmatrix} \boldsymbol{P}_{\omega_{1}}^{\star}, \dots, \boldsymbol{P}_{\omega_{|\Omega|}}^{\star} \end{bmatrix} &\in \mathbb{C}^{N_{\mathsf{rx}} \times (|\Omega|N_{\mathsf{s}})}, \\ \boldsymbol{P}_{\Omega,D} &= \begin{bmatrix} \boldsymbol{P}_{\omega_{1},D}, \dots, \boldsymbol{P}_{\omega_{|\Omega|},D} \end{bmatrix} &\in \mathbb{C}^{N_{\mathsf{tx}}^{\mathsf{RF}} \times (|\Omega|N_{\mathsf{s}})}, \\ \boldsymbol{P}_{\Omega,A} &\in \mathbb{C}^{N_{\mathsf{tx}} \times N_{\mathsf{tx}}^{\mathsf{RF}}} \end{split}$$

Solutions

Channel Model

Assumptions:

clusters.

Considered strategies:

□ Full digital setup. Linear precoding with *P*^{*}_k and linear combining with *G*^{*}_k for each subcarrier *k*

 $\boldsymbol{H}[d] = \beta \sqrt{\frac{N_{\mathsf{rx}} N_{\mathsf{tx}}}{L}} \sum_{l=1}^{N_{\mathsf{cl}}} \sum_{r=1}^{N_{\mathsf{path}}^{\prime}} \alpha_{r,l} p(dT_s - \tau_l - \tau_r) \boldsymbol{a}_{\mathsf{rx}}(\boldsymbol{\theta}_{r,l}) \boldsymbol{a}_{\mathsf{tx}}^{\mathsf{H}}(\boldsymbol{\phi}_{r,l})$

□ The number of paths is significantly lower

than for the sub-6GHz frequency band. The paths propagate in space and time

Full hybrid transceiver. Linear precoding with $P_{k,A}^* P_{k,D}^*$ and linear combining with

 $\left(oldsymbol{G}_{k,A}^{\star}oldsymbol{G}_{k,D}^{\star}
ight)^{\mathsf{H}}$ at each subcarrier.

□ **Full hybrid transceiver.** Linear precoding with $P_{\Omega,A}^{\star}P_{k,D}^{\star}$ and linear combining with $\left(\boldsymbol{G}_{\Omega,A}^{\star}\boldsymbol{G}_{k,D}^{\star}\right)^{H}$ at each subcarrier.

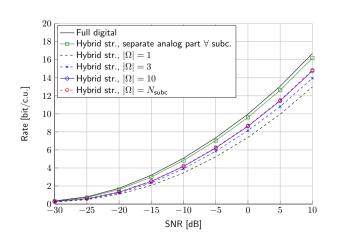
$\Omega \subset \{1, \dots, N_{\mathsf{subc}}\}$ $\omega_I \in \Omega, \ \forall I \in \{1, \dots, |\Omega|\}$

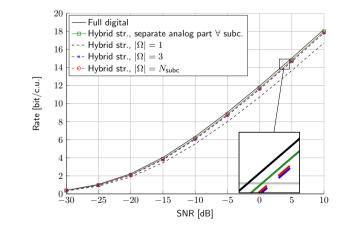
For solving the optimization problem, we use either the *Orthogonal Matching Pursuit* (OMP) or the *Block Coordinate Descent* (BCD) algorithm

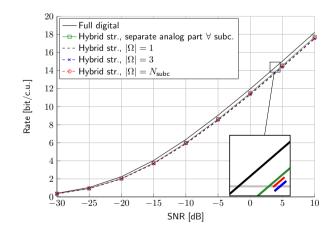
(Brief) Description of the Algorithms

BCD Decomposition, Statistical Channel Model

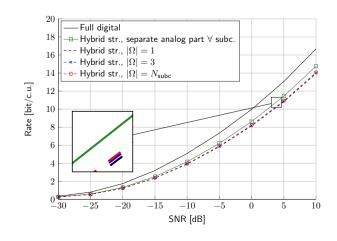
OMP Decomposition, Statistical Channel Model


BCD:


- Optimize in each iteration either the digital or analog part. Assume the other one fixed
- In each step, project the analog matrix to the nearest (in Euclidean sense) matrix of the required set


OMP:

- In each of the N_{RF} steps, choose a vector from the codebook that has the maximal projection on the remains of the matrix being decomposed.
- □ In each step, project out the selected vector


BCD Decomposition, Measured Channels

OMP Decomposition, Measured Channels

Discussion

- A practical solution for wideband linear precoding/combining has been presented
- □ A reduced set of subcarriers can be used for designing the analog transmit/receive strategy → reduction of complexity
- The choice of the decomposition algorithm is remarkably important
- Future work should consider channel estimation

Technische Universität München