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What is EIRP?

Definition: Equivalent Isotropically Radiated Power (EIRP)
EIRP is the amount of power that a theoretical isotropic antenna
would emit to produce the peak power density observed in the
direction of maximum antenna gain

EIRP is constrained to protect health

EIRP(x) = max
θ∈[0,π]
ϕ∈[0,2π]

E
[
|r(θ, ϕ, x)|2

]
(1)

r(θ, ϕ, x): signal at (θ, ϕ) on a sphere around antenna array
x: the transmitted signals at the antennas

E[•]: Expectation/averaging over time interval t
t very short ⇒ EIRP per signal (no expectation needed)
t ∼ Duration of Precoder w ⇒ replace x by w (assuming
normalized symbols)
t longer ⇒ for sufficient randomness isotropic antenna is
approached

Objective of the maximization is not concave!
⇒ Simple solution: Sample at sufficiently many positions on sphere

Goal of This (Ongoing) Work
Calculate, bound and/or estimate the EIRP analytically

Is EIRP relevant for massive MIMO?

Example:
20 receivers with single antennas
Zero-forcing beamforming

20 Tx Antennas

In the fully loaded
system broad beams
lead to high EIRP

40 Tx Antennas

Twice as many Tx
antennas seems to
work well

200 Tx Antennas

Narrow beams cause
high EIRP (one can
control this!)

EIRP depends on transmit power and number of antennas
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Transmitter Parameters

uniform linear array (ULA) transmitter with M antennas
isotropic radiators (point sources)
antenna spacing of d = kλ = λ/2
no mutual coupling between antennas

Phase Difference Between Two Antennas of an ULA

Far field assumption
⇒ Rotational symmetry for the azimuthal angle

d

d cos(θ)

θ
r � d

2πd cos(θ)
λ

= 2πk cos(θ) (2)

Calculating the EIRP of an ULA

The signal on the sphere is

r (θ, x) =
M∑

m=1
xmej2π(m−1)k cos(θ) (3)

EIRP(x) = max
θ∈[0,π]

E
[
|r (θ, x)|2

]
= max
θ∈[0,π]

E

∣∣∣∣∣
M∑

m=1
xmej2π(m−1)k cos(θ)

∣∣∣∣∣
2

= max
θ∈[0,π]

tr (R(θ)S) (4)

where ωm = ej2πmk cos(θ) and

R(θ) =


ω0 ω1 . . . ωM−2 ωM−1

ω−1 ω0 . . . ωM−3 ωM−2

...
... . . . ...

...
ω−M+2 ω−M+3 . . . ω0 ω1

ω−M+1 ω−M+2 . . . ω−1 ω0

 (5)

S = E
[
xxH

]
(6)

The trace of AB is the sum of all the elements of A� BT [1]

tr (AB) = 1T
(
A� BT

)
1 (7)

For am ∈ C and α = [α1, . . . , αM−1] ∈ RM−1 we bound

amejαm + a∗me−jαm = 2 Re
{

amejαm
}
≤ 2 |amejαm | = 2 |am| (8)

⇒ max
α∈RM−1

M−1∑
m=1

(
amejαm + a∗me−jαm

)
≤ 2

M−1∑
m=1
|am|, (9)

Proposed EIRP Upper Bound for an ULA

EIRP(x) = max
θ∈[0,π]

tr (R(θ)S) = max
θ∈[0,π]

1T
(
R(θ)� ST

)
1 (10)

= tr (S) + max
θ∈[0,π]

M−1∑
m=1

ω−m
M−m∑
l=1

[S]l ,l+m + ωm
M−m∑
l=1

[S]l+m,l

= tr (S) + max
θ∈[0,π]

M−1∑
m=1

ωm
M−m∑
l=1

[S]l ,l+m + ω−m
M−m∑
l=1

[S]∗l ,l+m

≤ tr (S) + 2
M−1∑
m=1

∣∣∣∣∣
M−m∑
l=1

[S]l ,l+m

∣∣∣∣∣ (11)

The EIRP of an ULA is upper bounded by the sum of the absolute
values of the sums of the (off-)diagonals of matrix S = E[xxH]

IDFT Simplifies Calculating the EIRP of an ULA

EIRP(x) = lim
K→∞

‖FK x 3x‖2∞ (12)

where FK x 3 is the length K IDFT matrix [2]

for K <∞ this is a smart way of sampling
EIRP of an ULA is similar to PAPR of OFDM

⇒ Proposed upper bound bounds PAPR of OFDM

EIRP/PAPR Upper Bounds

PAPR is upper bounded with the maximum sampled value |rmax| as

Worst case: EIRP(x) ≤ ‖S‖1
Paterson et al. [3] (K = M):

EIRP(x) ≤
( 2
π

loge (2M) + 2
)
|rmax|2 (13)

Sharif et al. [4] (for K
M > pi√

2):

EIRP(x) ≤
K2

M2

K2

M2 − π2
2
|rmax|2 (14)

Proposed Upper Bound is Close for Few Antennas
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x ∼ CN (0, 1
M I)

Transmission to One Single Antenna Receiver

The received signal is
y = hHx + z (15)

where z ∼ CN (0, σ2) and h ∼ CN (0, I).
Sum power constraint is

‖x‖22 = tr (S) ≤ P. (16)

EIRP constraint is
EIRP(x) ≤ PEIRP. (17)

For proper complex Gaussian noise capacity is

C = max
fx(x)

I (y , x) = max
fx(x)

h (y)− h (y |x)

= max
fx(x)

h (y)− log2

(
eπσ2

)
(18)

s.t.: tr (S) ≤ P and EIRP(x) ≤ PEIRP

The differential entropy h (y) is maximized, if and only if, y is
proper complex Gaussian distributed
⇒ x has to be proper complex Gaussian distributed?

⇒ h (y) = log2

(
eπσ2

y

)
= log2

(
eπhHSh

)
(19)

⇒ C = max
S

log2

(
1 +

1
σ2 hHSh

)
(20)

s.t.: tr (S) ≤ P and EIRP(x) ≤ PEIRP

⇒ Linear precoding is optimal

Without EIRP constraint optimal S is found by applying
eigenvalue decomposition and water filling
We do not know how to find optimal S with EIRP constraint

⇒ We use maximum ratio transmission and a scaling to comply
with the sum power constraint and the EIRP constraint

wMRT =
h

max
(
‖h‖2,

√
EIRP(h)

) (21)

⇒ The EIRP upper bound (11) consists of a sum of absolute values
of the sums of products of proper complex Gaussian random
variables

Conclusions

EIRP constraints constraint precoding in MIMO
We present an upper bound which is close for few antennas
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