Technical University Munich

In cooperation with

Channel Capacity Comparison of mmWave Receiver Concepts

Kilian Roth^{1 2}, Javier Garcia², Jawad Munir², Michael Faerber¹, Josef A. Nossek²

¹ Next Generation and Standards, Intel Deutschland GmbH, Neubiberg, Germany Email: {kilian.roth, michael.faerber}@intel.com ² Institute for Circuit Theory and Signal Processing, Technical University Munich, Munich, Germany Email: {kilian.roth, javier.garcia, jawad.munir, josef.a.nossek}@tum.de

Motivation

- mmWave systems operate at low SNR (per antenna)
- System limited by the power consumption (especially at the UE)
- Different receiver architectures possible
- Actually power consumption of the different architectures unknown
- How many antennas with 1-bit quantization can be used per antenna with full resolution ADC at equal power consumption ?
- Performance comparison of different solution at equal RF frontend power consumption

Capacity Expressions

Assumptions:

- Perfect CSI at the transmitter
- High resolution D/A conversion at each transmit antenna
- Perfect CSI at the receiver for HDBF and LDBF
- Optimal spatial direction know for ABF
- HDBF channel capacity (waterfilling solution):

HDBF High resolution A/D conversion Digital Beam Forming ABF/HBF Analog Beam Forming / Hybrid Beam Forming Low resolution A/D conversion Digital Beam Forming LDBF

$$R_{HDBF}(\boldsymbol{H}) = \sum_{i=1}^{rank(\boldsymbol{H})} \log_2 \left(1 + P_i \frac{D_i^2}{\sigma_n^2} \right)$$

with $P_i = \max\left(\left(\left(\mu - \frac{\sigma_n^2}{D_i^2} \right), 0 \right) \text{ and } \sum_{i=1}^{M_t} P_i = P_t \right)$

ABF channel capacity:

$$R_{ABF}(\boldsymbol{H}) = \log_2 \left(1 + \frac{\left\| \boldsymbol{w}^H(\hat{\phi}) \boldsymbol{H} \right\|_2^2}{M_r \sigma_n^2} \right)$$

with $\hat{\phi} = \operatorname*{argmax}_{\phi} \left\| \left| \boldsymbol{w}^H(\phi) \boldsymbol{H} \right\|_2^2$ and $\boldsymbol{w}^H(\hat{\phi}) = \left[1, e^{j\hat{\phi}}, e^{j2\hat{\phi}}, \cdots, e^{j(M_r - 1)\hat{\phi}} \right]$

LDBF channel capacity lower bound:

- Bound is tight in the low SNR regime
- Bound is loose in the high SNR regime

$$R_{LDBF}(\boldsymbol{H}) = \log_2 \left| \boldsymbol{I}_{M_t} + \frac{\gamma}{M_t} \boldsymbol{H}^H \operatorname{diag} \left(\frac{1 - \rho}{1 + \rho \frac{\gamma}{M_t} ||\boldsymbol{h}_i||_2^2} \right) \boldsymbol{H} \right|$$

(1)

(2)

Symbol description: ith eigenvalue of $oldsymbol{H}$ in descending $\hat{\phi}$ order power allocated to the *i*th orthogonal channel with gain D_i

optimal spatial angle transmit SNR $\frac{P_t}{\sigma^2}$ distortion factor dependen on A/D resolution

1-bit: 0.3634

*i*th row of \boldsymbol{H}

Component Power Consumption

System parameters:

- Carrier-frequency 60 GHz
- Systembandwidth 2 GHz
- LO shared by all antennas
- Baseband power consumption assumed similar
- Reported designs in scientific publications not fully reliable

component	power consumption
LO	22.5mW
LNA	5.4mW
Mixer	0.3mW
90° hybrid and LO buffer	3.0mW
LA	0.8mW
1-bit ADC	$\approx 0 \mathrm{mW}$
phase shifter	2.0mW
VGA	2.0mW
ADC (8 ENOB)	10.0mW

system name	number of antennas M_r	power consumption	calculation formula
HDBF	3	121.5mW	$(33M_r + 22.5)$ mW
ABF	7	123.5mW	$(11M_r + 24 + 22.5)$ mW
LDBF	10	128.5mW	$(10.6M_r + 22.5)$ mW

Signal Model

total transmit power	ŀ
noise variance	7
spatial angle	/

 $oldsymbol{h}_i$

Evaluation Results

Simulation description

 D_i

 P_i

 P_t

 σ_n^2

 \mathcal{O}

- Gaussian i.i.d. channel coefficients represent a rich scattering environment
- Ray based channel model with a limited number of rays represent a LOS channel
- Rate is averaged over 1000 channel realizations
- Comparison of receivers with equal power consumption of the RF front-end

Ray based channel model with 3 rays

Symbol description:

- transmit signal \boldsymbol{x}
- Hchannel
- noise \boldsymbol{n}
- receive signal Y
- receive \boldsymbol{r}
- Number of transmitter antennas M_t Number of receiver antennas M_r Number of antennas for one M_{rRFE} RFE-chain

Operator $F(\cdot)$ different for each system: HDBF $F_{\infty}(oldsymbol{y}) = oldsymbol{y}$ $F_{a/h}(\boldsymbol{y}) = \boldsymbol{W} \boldsymbol{y}$ with $w_{i,j} = e^{\phi_{i,j}}$ ABF $\boldsymbol{w}_i =$ $\left[1, e^{j\phi_i}, e^{j2\phi_i}, \cdots, e^{j(M_{rRFE}-1)\phi_i}\right]$ $F_1(oldsymbol{y}) = Q_1(oldsymbol{y})$ LDBF $Q_1(\boldsymbol{y}) = \operatorname{sign}(\Re(\boldsymbol{y})) + j \cdot \operatorname{sign}(\Im(\boldsymbol{y}))$

Conclusion

- Dependent on the channel substantial performance improvement possible
- Considering the beam alignment overhead additional improvement compared to ABF
- Specific HW design for low resolution is likely to further improve the power consumption of LDBF
- Link level simulation will show the implementation gap of the quantized MIMO systems