Technische Universität München

Fakultät für Elektrotechnik und Informationstechnik

Transmit Signal Processing for Massive MIMO Systems Using 1-Bit Quantization

Hela Jedda, Amine Mezghani, Josef A. Nossek

Technische Universität München Arcisstr. 21, 80290 Munich, Germany,

{hela.jedda, josef.a.nossek}@tum.de

Massive MIMO Systems

+ Large number of antennas at the base station

- + High spectral efficiency
- + High energy efficiency
- Large number of RF chains and DA/AD converters
- High power consumption with high resolution DA/AD converters

System Model: MU-MISO Downlink

1-Bit Massive MIMO Systems

+ DA/AD converters of 1-bit resolution

- + Reduced power consumption
- + Simplified RF chain
- Performance degradation due to the coarse quantization

 \Re

Question: How to design precoding techniques to mitigate the multi user interference and the coarse quantization distortions in 1-bit massive MIMO systems?

- \mathcal{O} represents the set of QPSK constellation
- N antennas at the base station
- M single-antenna users, where N >> M

Mapping: \mathcal{M}

Goal: design the transmit vector signal \mathbf{x} for a given input signal vector \mathbf{s} depending on the channel, while assuming full CSIT.

Minimum BER vs. MMSE

Problem Formulation

• Single User Scenario

$$\max_{\mathbf{x}} \Re\{(rs^*)^2\} = \max_{\mathbf{x}} |r||s| \cos(2\phi) \text{ s.t. } \mathbf{x} \in \mathcal{O}^N$$

• Multi User Scenario

$$\max_{\mathbf{x}} \Re\{(r_m s_m^*)^2\} = \max_{\mathbf{x}} |r_m| |s_m| \cos(2\phi_m), m = 1, 2, ..., M \text{ s.t. } \mathbf{x} \in \mathcal{O}^N$$

Optimization Problem

• Minimum BER: make the received signal belong to the same quadrant as the desired signal and far

• **MMSE:** get the received signal as close as possible to the desired signal \implies circles around the QPSK

The M cost functions can be jointly expressed by the following matrix

$$\mathbf{P} = \Re \{ \operatorname{diag} \left(\mathbf{rs}^{H} \right)^{2} \}$$

The optimization problem is expressed as

from the thresholds \implies half bounded squares

points

Simulation Results

• N = 32, M = 4

- H with i.i.d. complex-valued entries of zero mean and unit variance: 500 realizations
- 10000 QPSK symbols per channel realization

 $\max_{\mathbf{x}'} \det(\mathbf{P}) \text{ s.t. } x'_n \le 1 \text{ and } -x'_n \le 1, n = 1, 2, \dots 2N,$

where $\mathbf{x'} = \begin{bmatrix} \mathbf{x}_{\Re} \\ \mathbf{x}_{\Im} \end{bmatrix}$

• Constraint relaxation to get a convex optimization problem • Use the Gradient Projection algorithm to solve the optimization problem

Conclusion

• Minimum BER precoding significantly improves the performance in terms of uncoded BER and MI. • The complexity of this method grows exponentially with the number of users M.

Future Work

• Use of this method to perform spatial coding

• Investigate other non linear precoding techniques such as Thomlinson Harashima precoder