

Quantized Polar Code Decoders: Analysis and Design

Joachim Neu jneu@stanford.edu

Joint work with: Gianluigi Liva^{DLR}, Mustafa Coşkun^{DLR} Thank you: Rüdiger Urbanke^{EPFL}, Gerhard Kramer^{TUM}

2019 Oberpfaffenhofen Workshop on High Throughput Coding DLR, Munich – February 28, 2019

What?

What?

Analyze and design (list) decoders for polar codes (PC) ...

What?

Analyze and design (list) decoders for polar codes (PC) for 3-level quantized (3Q) channel output,

What?

Analyze and design (list) decoders for polar codes (PC) for 3-level quantized (3Q) channel output, ... and 3Q log-likelihood ratio (LLR) messages.

What?

Analyze and design (list) decoders for polar codes (PC) for 3-level quantized (3Q) channel output, ... and 3Q log-likelihood ratio (LLR) messages.

Why?

What?

Analyze and design (list) decoders for polar codes (PC) for 3-level quantized (3Q) channel output, ... and 3Q log-likelihood ratio (LLR) messages.

Why?

Lower complexity (e.g., IoT)

What?

Analyze and design (list) decoders for polar codes (PC) for 3-level quantized (3Q) channel output, ... and 3Q log-likelihood ratio (LLR) messages.

Why?

Lower complexity (*e.g.*, IoT)

→ Lower energy consumption

What?

Analyze and design (list) decoders for polar codes (PC) for 3-level quantized (3Q) channel output, ... and 3Q log-likelihood ratio (LLR) messages.

Why?

Lower complexity (*e.g.*, IoT)

- → Lower energy consumption
- → Cheaper device production

• The negative impact of coarse quantization was underestimated in the literature

- The negative impact of coarse quantization was underestimated in the literature
- LLR quantization \rightarrow path metric (PM) quantization \rightarrow impairs list management in list decoders

- The negative impact of coarse quantization was underestimated in the literature
- LLR quantization \rightarrow path metric (PM) quantization \rightarrow impairs list management in list decoders
- Low-complexity mitigation schemes:

- The negative impact of coarse quantization was underestimated in the literature
- LLR quantization \rightarrow path metric (PM) quantization \rightarrow impairs list management in list decoders
- Low-complexity mitigation schemes:
 - → ML-among-list

- The negative impact of coarse quantization was underestimated in the literature
- LLR quantization \rightarrow path metric (PM) quantization \rightarrow impairs list management in list decoders
- Low-complexity mitigation schemes:
 - → ML-among-list
 - → Expected path metric updates

- The negative impact of coarse quantization was underestimated in the literature
- LLR quantization \rightarrow path metric (PM) quantization \rightarrow impairs list management in list decoders
- Low-complexity mitigation schemes:
 - → ML-among-list
 - → Expected path metric updates
- \rightarrow Sizable gains, particularly for low code rates

Preliminaries

Uniform quantization $f_{Q(3,\delta)}$: $\mathcal{L}_3 \triangleq \{-1, 0, +1\} \subseteq \mathbb{Z}$

Uniform quantization $f_{Q(3,\delta)}$: $\mathcal{L}_3 \triangleq \{-1, 0, +1\} \subseteq \mathbb{Z}$

Uniform quantization $f_{Q(3,\delta)}$: $\mathcal{L}_3 \triangleq \{-1, 0, +1\} \subseteq \mathbb{Z}$

 $\text{Other quantization:} \quad \mathcal{L}_7 \triangleq \{0,\pm 1,\pm 2,\pm 3\} \subseteq \mathbb{Z} \quad \mathcal{L}_\infty \triangleq \mathbb{R}$

$$\mathbf{c} = \mathbf{G}\mathbf{u}$$
 $\mathbf{G} = \mathbf{F}^{\otimes m} \mathbf{P}_m^{(\text{bitrev})}$ $\mathbf{F} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $n = 2^m$

Technische Universität München

PC Basics & SC Decoding [Stolte 2002] [Arikan 2009]

Technische Universität München

PC Basics & SC Decoding [Stolte 2002] [Arikan 2009]

PC Basics & SC Decoding [Stolte 2002] [Arıkan 2009]

Path metric: $PM = f_{PM}(\lambda_0, \hat{u}_0)$

Technische Universität München

PC Basics & SC Decoding [Stolte 2002] [Arikan 2009]

Path metric: $PM = f_{PM}(\lambda_0, \hat{u}_0) + f_{PM}(\lambda_1, \hat{u}_1)$

Technische Universität München

PC Basics & SC Decoding [Stolte 2002] [Arikan 2009]

Path metric: $P_{M} = f_{PM}(\lambda_0, \hat{u}_0) + f_{PM}(\lambda_1, \hat{u}_1) + f_{PM}(\lambda_2, \hat{u}_2)$

Technische Universität München

PC Basics & SC Decoding [Stolte 2002] [Arikan 2009]

Path metric: $P_{M} = f_{PM}(\lambda_0, \hat{u}_0) + f_{PM}(\lambda_1, \hat{u}_1) + f_{PM}(\lambda_2, \hat{u}_2) + f_{PM}(\lambda_3, \hat{u}_3)$

Technische Universität München

PC Basics & SC Decoding [Stolte 2002] [Arikan 2009]

Path metric: $P_{M} = f_{PM}(\lambda_0, \hat{u}_0) + f_{PM}(\lambda_1, \hat{u}_1) + f_{PM}(\lambda_2, \hat{u}_2) + f_{PM}(\lambda_3, \hat{u}_3)$

Compute $\lambda_{011} \equiv \lambda_3$ (under all-zero codeword assumption):

Y_0 Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7

SC List Decoding [Tal and Vardy 2015] [Balatsoukas-Stimming et al. 2015] List size L = 2:

 $\mathsf{PM}^{\emptyset} = 0$

SC List Decoding [Tal and Vardy 2015] [Balatsoukas-Stimming et al. 2015] List size L = 2:

3Q Decoding

J. Neu — Quantized Polar Code Decoders: Analysis and Design

J. Neu — Quantized Polar Code Decoders: Analysis and Design

J. Neu — Quantized Polar Code Decoders: Analysis and Design

Unquantized decoder:

Unquantized decoder:

• Full-precision LLRs $\lambda \in \mathcal{L}_{\infty}$

Unquantized decoder:

- Full-precision LLRs $\lambda \in \mathcal{L}_{\infty}$
- Full-precision PMs:

$$PM = -\ln(\Pr[\boldsymbol{U} = \hat{\boldsymbol{u}} | \boldsymbol{Y} = \boldsymbol{y}])$$

pprox Plausibility of path (ML)

Unquantized decoder:

Quantized decoder:

- Full-precision LLRs $\lambda \in \mathcal{L}_{\infty}$
- Full-precision PMs:

$$PM = -\ln(\Pr[\boldsymbol{U} = \hat{\boldsymbol{u}} | \boldsymbol{Y} = \boldsymbol{y}])$$

pprox Plausibility of path (ML)

Unquantized decoder:

- Full-precision LLRs $\lambda \in \mathcal{L}_{\infty}$
- Full-precision PMs:

$$PM = -\ln(\Pr[\boldsymbol{U} = \hat{\boldsymbol{u}} | \boldsymbol{Y} = \boldsymbol{y}])$$

pprox Plausibility of path (ML)

Quantized decoder:

- Distorted LLRs $\tilde{\lambda} \in \mathcal{L}_3$

Unquantized decoder:

- Full-precision LLRs $\lambda \in \mathcal{L}_{\infty}$
- Full-precision PMs:

$$PM = -\ln(\Pr[\boldsymbol{U} = \hat{\boldsymbol{u}} | \boldsymbol{Y} = \boldsymbol{y}])$$

pprox Plausibility of path (ML)

Quantized decoder:

- Distorted LLRs $\tilde{\lambda} \in \mathcal{L}_3$
 - → No magnitude, no reliability info

Unquantized decoder:

- Full-precision LLRs $\lambda \in \mathcal{L}_{\infty}$
- Full-precision PMs:

$$P_M = -\ln(\Pr[\boldsymbol{U} = \hat{\boldsymbol{u}} | \boldsymbol{Y} = \boldsymbol{y}])$$

 \approx Plausibility of path (ML)

Quantized decoder:

- Distorted LLRs $\tilde{\lambda} \in \mathcal{L}_3$
 - → No magnitude, no reliability info
- Distorted PMs

Unquantized decoder:

- Full-precision LLRs $\lambda \in \mathcal{L}_{\infty}$
- Full-precision PMs:

$$PM = -\ln(\Pr[\boldsymbol{U} = \hat{\boldsymbol{u}} | \boldsymbol{Y} = \boldsymbol{y}])$$

 \approx Plausibility of path (ML)

Quantized decoder:

- Distorted LLRs $\tilde{\lambda} \in \mathcal{L}_3$
 - → No magnitude, no reliability info
- Distorted PMs
 - → Bad plausibility measure

Unquantized decoder:

- Full-precision LLRs $\lambda \in \mathcal{L}_{\infty}$
- Full-precision PMs:

$$PM = -\ln(\Pr[\boldsymbol{U} = \hat{\boldsymbol{u}} | \boldsymbol{Y} = \boldsymbol{y}])$$

pprox Plausibility of path (ML)

Quantized decoder:

- Distorted LLRs $\tilde{\lambda} \in \mathcal{L}_3$
 - → No magnitude, no reliability info
- Distorted PMs
 - → Bad plausibility measure

PM quantization severely impacts list management!

Unquantized decoder:

- Full-precision LLRs $\lambda \in \mathcal{L}_{\infty}$
- Full-precision PMs:

$$PM = -\ln(\Pr[\boldsymbol{U} = \hat{\boldsymbol{u}} | \boldsymbol{Y} = \boldsymbol{y}])$$

pprox Plausibility of path (ML)

Quantized decoder:

- Distorted LLRs $\tilde{\lambda} \in \mathcal{L}_3$
 - → No magnitude, no reliability info
- Distorted PMs
 - → Bad plausibility measure

PM quantization severely impacts list management!

→ Use *ML-among-list* to declare winning codeword!

Unquantized decoder:

- Full-precision LLRs $\lambda \in \mathcal{L}_{\infty}$
- Full-precision PMs:

$$PM = -\ln(\Pr[\boldsymbol{U} = \hat{\boldsymbol{u}} | \boldsymbol{Y} = \boldsymbol{y}])$$

pprox Plausibility of path (ML)

Quantized decoder:

- Distorted LLRs $\tilde{\lambda} \in \mathcal{L}_3$
 - → No magnitude, no reliability info
- Distorted PMs
 - → Bad plausibility measure

PM quantization severely impacts list management!

- → Use *ML-among-list* to declare winning codeword!
- → Use statistical reliability info in *expected path metric updates*!

Mitigation Techniques

Maximum-Likelihood among List: n = 128

J. Neu — Quantized Polar Code Decoders: Analysis and Design

Maximum-Likelihood among List: n = 128

J. Neu — Quantized Polar Code Decoders: Analysis and Design

Maximum-Likelihood among List: n = 128

J. Neu — Quantized Polar Code Decoders: Analysis and Design
Maximum-Likelihood among List: n = 128

Maximum-Likelihood among List: n = 256

Maximum-Likelihood among List: n = 256

Maximum-Likelihood among List: n = 256

Maximum-Likelihood among List: n = 256

Maximum-Likelihood among List: n = 256

Unquantized decoder:

Unquantized decoder:

Unquantized decoder:

Quantized decoder:

Unquantized decoder:

Quantized decoder:

Unquantized decoder:

Quantized decoder:

If
$$P\left(\Lambda^{(\mathsf{unq})},\Lambda^{(\mathsf{q})}
ight)$$
 is known, $j\in\{0,1\}$:

If
$$P(\Lambda^{(unq)}, \Lambda^{(q)})$$
 is known, $j \in \{0, 1\}$:
$$\min_{\hat{f}_{\mathsf{PM}}} \mathbb{E}\left[\left(f_{\mathsf{PM}}(\Lambda^{(unq)}, j) - \hat{f}_{\mathsf{PM}}(\Lambda^{(q)}, j)\right)^{2}\right]$$

If
$$P(\Lambda^{(unq)}, \Lambda^{(q)})$$
 is known, $j \in \{0, 1\}$:

$$\min_{\hat{f}_{PM}} E\left[\left(f_{PM}(\Lambda^{(unq)}, j) - \hat{f}_{PM}(\Lambda^{(q)}, j)\right)^{2}\right]$$

$$\updownarrow$$

W W W W W W W

For $\lambda_1, \lambda_2 \in \mathcal{L}_{(3,\infty)} \triangleq \mathcal{L}_3 \times \mathcal{L}_\infty$:

For
$$\lambda_1, \lambda_2 \in \mathcal{L}_{(3,\infty)} \triangleq \mathcal{L}_3 \times \mathcal{L}_\infty$$
:
 $\lambda_1 \boxplus \lambda_2 = \left(\lambda_1^{(q)}, \lambda_1^{(unq)}\right) \boxplus \left(\lambda_2^{(q)}, \lambda_2^{(unq)}\right) \triangleq \left(\lambda_1^{(q)} \boxplus \lambda_2^{(q)}, \lambda_1^{(unq)} \boxplus \lambda_2^{(unq)}\right)$
 $\lambda_1 \bullet \lambda_2 = \left(\lambda_1^{(q)}, \lambda_1^{(unq)}\right) \bullet \left(\lambda_2^{(q)}, \lambda_2^{(unq)}\right) \triangleq \left(\lambda_1^{(q)} \bullet \lambda_2^{(q)}, \lambda_1^{(unq)} \bullet \lambda_2^{(unq)}\right)$

Expected Path Metric Updates: Experiments

Expected Path Metric Updates: Experiments

EPMU with Contradiction Counting

Idea: Count contradictions at variable nodes as low-complexity instantaneous reliability indicator!

EPMU with Contradiction Counting

Idea: Count contradictions at variable nodes as low-complexity instantaneous reliability indicator!

EPMU with Contradiction Counting: Experiments

EPMU with Contradiction Counting: Experiments

EPMU with Contradiction Counting: Experiments

Validation / Robustness

Check nodes:

Check nodes:

Variable nodes:

Comparison: '1st Layer Unquantized Then Q3'

Comparison: '1st Layer Unquantized Then Q3'

Comparison: '1st Layer Unquantized Then Q3'

Key Take-Aways

- LLR quant. \rightarrow PM quant. \rightarrow list management impaired

n = 256, FER 10^{-3}

Key Take-Aways

- LLR quant. \rightarrow PM quant. \rightarrow list management impaired
- *ML-among-list* and *EPMU* can mitigate impact of quant.:

n = 256, FER 10^{-3}

Key Take-Aways

- LLR quant. \rightarrow PM quant. \rightarrow list management impaired
- *ML-among-list* and *EPMU* can mitigate impact of quant.:
 → R ≈ 0.15: 1dB recovered of 2dB loss to 3Q ch./ung. dec.

n = 256, FER 10^{-3}

Key Take-Aways

- LLR quant. \rightarrow PM quant. \rightarrow list management impaired
- ML-among-list and EPMU can mitigate impact of quant.:
 - → $R \approx 0.15$: 1dB recovered of 2dB loss to 3Q ch./unq. dec.
 - → R = 1/2: 1dB recovered of 1.2dB loss to 3Q ch./unq. dec.

n = 256, FER 10^{-3}

Key Take-Aways

- LLR quant. \rightarrow PM quant. \rightarrow list management impaired
- ML-among-list and EPMU can mitigate impact of quant.:
 - → $R \approx 0.15$: 1dB recovered of 2dB loss to 3Q ch./unq. dec.
 - → R = 1/2: 1dB recovered of 1.2dB loss to 3Q ch./unq. dec.
- Fairly coarse quant. suffices for close-to-optimal performance

n = 256. FER 10^{-3}

Key Take-Aways

- LLR quant. \rightarrow PM quant. \rightarrow list management impaired
- *ML-among-list* and *EPMU* can mitigate impact of quant.:
 - → $R \approx 0.15$: 1dB recovered of 2dB loss to 3Q ch./unq. dec.
 - → R = 1/2: 1dB recovered of 1.2dB loss to 3Q ch./unq. dec.
- Fairly coarse quant. suffices for close-to-optimal performance \rightarrow Q7, R = 1/2: 0.3dB loss to unq. ch./dec.

Key Take-Aways

- LLR quant. \rightarrow PM quant. \rightarrow list management impaired
- *ML-among-list* and *EPMU* can mitigate impact of quant.:
 - → $R \approx 0.15$: 1dB recovered of 2dB loss to 3Q ch./unq. dec.
 - → R = 1/2: 1dB recovered of 1.2dB loss to 3Q ch./unq. dec.
- Fairly coarse quant. suffices for close-to-optimal performance
 → Q7, R = 1/2: 0.3dB loss to unq. ch./dec.

Future Work

Low-complexity instantaneous reliability indicators

n = 256, FER 10^{-3}

Key Take-Aways

- LLR quant. \rightarrow PM quant. \rightarrow list management impaired
- *ML-among-list* and *EPMU* can mitigate impact of quant.:
 - → $R \approx 0.15$: 1dB recovered of 2dB loss to 3Q ch./unq. dec.
 - → R = 1/2: 1dB recovered of 1.2dB loss to 3Q ch./unq. dec.
- Fairly coarse quant. suffices for close-to-optimal performance
 → Q7, R = 1/2: 0.3dB loss to unq. ch./dec.

Future Work

- Low-complexity instantaneous reliability indicators
- Approximate distributions in density evolution \rightarrow speedup

n = 256, FER 10^{-3}

Key Take-Aways

- LLR quant. \rightarrow PM quant. \rightarrow list management impaired
- *ML-among-list* and *EPMU* can mitigate impact of quant.:
 - → $R \approx 0.15$: 1dB recovered of 2dB loss to 3Q ch./unq. dec.
 - → R = 1/2: 1dB recovered of 1.2dB loss to 3Q ch./unq. dec.
- Fairly coarse quant. suffices for close-to-optimal performance \rightarrow Q7, R = 1/2: 0.3dB loss to unq. ch./dec.

Future Work

- Low-complexity instantaneous reliability indicators
- Approximate distributions in density evolution \rightarrow speedup
- Interactions with outer codes (e.g., parity-checks)

n = 256, FER 10^{-3}

Thank you!

J. Neu, "Quantized Polar Code Decoders: Analysis and Design", Master's thesis at Technical University of Munich, September 2018, arXiv:1902.10395

References I

- N. Stolte. "Recursive Codes with the Plotkin-Construction and Their Decoding / Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung". PhD thesis. Technische Universität Darmstadt, 2002.
- **E.** Arıkan. "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels". In: *IEEE Trans. Inf. Theory* (2009).
- S. H. Hassani and R. Urbanke. "Polar Codes: Robustness of the Successive Cancellation Decoder with Respect to Quantization". In: *Proc. IEEE Int. Symp. Inf. Theory (ISIT).* 2012.
- A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg.
 "LLR-Based Successive Cancellation List Decoding of Polar Codes". In: *IEEE Trans. Signal Process.* (2015).
References II

I. Tal and A. Vardy. "List Decoding of Polar Codes". In: *IEEE Trans. Inf. Theory* (2015).