28th February 2019 Oberpfaffenhofen Workshop on High Throughput Coding

Probabilistic Shaping with On-Off Keying

Balázs Matuz¹, Fabian Steiner², Alexandru Git³

¹ German Aerospace Center (DLR)
 ² Technical University of Munich (TUM)
 ³ Mynaric AG

Knowledge for Tomorrow

Motivation

- Free-space optical (FSO) communications with increasing attention in the last years due to
 - large bandwidth/ high data rate
 - license free spectrum.
- Intensity modulation (IM) schemes, particularly for space links popular due to simple receivers.
- Commonly used IM schemes are
 - on-off keying (OOK)
 - pulse-position modulation (PPM).
- Additive white Gaussian noise (AWGN) channel model for direct detection.

OOK Rates

PPM Rates

How to reduce the gap to OOK capacity using binary codes?

 \rightarrow We try probabilistic shaping (PS) for OOK.

- 1 System Model
- Probabilistic Shaping for OOK
- **3** Achievable Rates
- 4 Code Design
- **5** Numerical Results
- 6 Summary

1 System Model

- Probabilistic Shaping for OOK
- 3 Achievable Rates
- 4 Code Design
- **5** Numerical Results
- 6 Summary

Setup

 Consider transmission of OOK symbols X over an average power constrained AWGN channel with

$$Y = X + N$$

where $N \sim \mathcal{N}(0, \sigma^2)$, $X \in \mathcal{X} = \{0, A\}$, A being the amplitude of the OOK symbol.

Average power constraint

$$\mathsf{E}\left[X^2\right] = A^2 P_X(A) = 1.$$

• Signal-to-noise ratio (SNR)

$$E_s/N_0 = 1/\sigma^2.$$

OOK Capacity

Channel capacity under OOK modulation constraint

$$C = \max_{P_X} I(X; Y) \quad \text{subject to} \quad A^2 P_X(A) = 1.$$

- The optimization over $P_X = (P_X(0) P_X(A))$ is an optimization over both the probability weights and the support.
- In fact, this implies an optimization only over $P_X(A)$, since

•
$$P_X(0) = 1 - P_X(A)$$
 and

•
$$A = \sqrt{1/P_X(A)}$$
.

• For $P_X = (\frac{1}{2} \frac{1}{2})$ we obtain rates for uniform OOK.

1 System Model

- Probabilistic Shaping for OOK
- 3 Achievable Rates
- 4 Code Design
- **5** Numerical Results
- 6 Summary

Transceiver Overview

Shaping and Channel Coding

 Distribution (constant composition) matcher encodes k' uniformly distributed bits into a length k shaped information bit sequence u

$$R_{DM} = \frac{k'}{k}.$$

 Systematic channel encoder generates n code bits c out of k information bits u with

$$\underbrace{\mathbf{c}}_{(u|p)} = u \underbrace{\mathbf{G}}_{(I|P)}.$$

Modulation

- We distinguish between OOK modulated information symbols X_S and modulated parity symbols X_U with
 - ► $X_{\rm S} \in \{0, A_{\rm S}\}$

•
$$X_{U} \in \{0, A_{U}\}$$

$$\blacktriangleright P_{X_{\rm S}} = P_U$$

•
$$P_{X_{\cup}} \approx (\frac{1}{2} \ \frac{1}{2}).$$

We consider two cases:

$$A = A_{\rm S} = A_{\rm U}$$

ii $A_{\rm S}$ possibly different from $A_{\rm U}$.

• Reverse operations at receiver (exploiting knowledge P_U).

1 System Model

- Probabilistic Shaping for OOK
- 3 Achievable Rates
- 4 Code Design
- **5** Numerical Results

6 Summary

Time Sharing Rate

• Transmission rate:

$$\mathsf{R}_{\mathsf{TX}} = \mathsf{R}_{\mathsf{DM}} \cdot \mathsf{R}_{\mathsf{C}} \approx \mathsf{H}(X_{\mathsf{S}}) \cdot \mathsf{R}_{\mathsf{C}}.$$

R_{TX} is directly related to P_{XS}(A_S) = p₁ via

$$p_1 = H^{-1} \left(\frac{R_{TX}}{R_C} \right). \tag{1}$$

• An achievable rate of the time sharing (TS) scheme is given by

$$R_{TS} = R_{C}I(X_{S}; Y_{S}) + (1 - R_{C})I(X_{U}; Y_{U}).$$

Achievable Rates for Fixed R_C

• Case i:
$$A_S = A_U = A$$
:
 $R_{TS_1^*} = \max_{p_1} R_{TS}$
subject to $\left(R_C p_1 + (1 - R_C)\frac{1}{2}\right)A^2 = 1$

with

$$A = 1/\sqrt{R_{\rm C}p_1 + (1 - R_{\rm C})/2}.$$

• Case ii: A_S and A_U possibly different:

$$\begin{split} R_{TS2}^{*} &= \max_{p_1,A_S} R_{TS} \\ \text{subject to} \quad R_C p_1 A_S^2 + (1-R_C) \frac{1}{2} A_U^2 = \frac{1}{2} \end{split}$$

with

$$A_{\rm U} = \sqrt{(1 - {\rm R_C} {\rm p_1} A_{\rm S}^2)/((1 - {\rm R_C})/2)}.$$

Pragmatic Approach

- Previous optimization provides for each R_C and E_s/N_0 an achievable rate R_{TS}^* , such that $R_{TX} \leq R_{TS}^*$.
- In practice, for a fixed R_{TX} we are interested in the code rate R_C* which requires the lowest E_s/N₀.
- Best code rate R_{C}^{*} among $\mathcal{R}_{C} = \{0.25, 0.33, 0.5, 0.67, 0.75, 0.8, 0.9\}.$

R _{TX}	R_{C}^{*} case i	${\sf R}_{\sf C}^*$ case ii
0.2	0.33	0.67
0.25	0.5	0.67
0.33	0.5	0.67
0.5	0.67	0.67
0.67	0.75	0.8
0.75	0.8	0.8
0.85	0.9	0.9

1 System Model

- Probabilistic Shaping for OOK
- 3 Achievable Rates
- 4 Code Design
- **5** Numerical Results

6 Summary

Protograph Low-Density Parity-Check (LDPC) Codes

- Protographs can be seen as a compact representation of (an ensemble of) structured LDPC codes.
- Protograph structure yields performance and hardware-friendly implementations.
- Standard tools to design good protographs:
 - > Optimization algorithm that evaluates a cost function and tries to minimize it.
 - Cost function associated to protograph: iterative decoding threshold.
- Extension of standard tools to consider prior (shaping).

Definition (Iterative decoding threshold)

Lowest E_s/N_0 , such that probability of symbol error after decoding vanishes as the block length and number of iterations go to infinity.

1 System Model

- Probabilistic Shaping for OOK
- 3 Achievable Rates
- 4 Code Design

5 Numerical Results

6 Summary

Achievable Rates

CER versus E_b/N_0 for $R_{TX} = 0.67$ bpcu, Case i

CER versus E_b/N_0 for $R_{TX} = 0.25$ bpcu, Cases i, ii

1 System Model

- Probabilistic Shaping for OOK
- 3 Achievable Rates
- 4 Code Design
- **5** Numerical Results

6 Summary

Summary

- We propose a transceiver architecture for shaped OOK and perform a dedicated code design.
- Use of binary LDPC codes with standard decoders.
- No need for iterations between demodulator and decoder.
- Only minor modifications at the receiver/transmitter required yielding visible gains:
 - 0.9 dB gain w.r.t. uniform OOK at R_{TX} = 0.67 bpcu for case i
 - ▶ 1.1 dB gain w.r.t. uniform OOK at $R_{TX} = 0.25$ bpcu for case ii.

Thank you for your attention!

Questions?

Contact: Balázs Matuz German Aerospace Center (DLR) balazs.matuz@dlr.de

Protographs

In the following, we provide the optimized base matrices \pmb{B}_1, \pmb{B}_2 and \pmb{B}_3 for code with $R_C=0.5, R_C=0.67$ and $R_C=0.75,$ respectively. For \pmb{B}_1 the first column is punctured.

$$\boldsymbol{B}_{1} = \begin{pmatrix} 3 & 0 & 0 & 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 & 0 & 1 & 2 \\ 3 & 0 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{B}_{2} = \begin{pmatrix} 1 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 3 \\ 4 & 2 & 3 & 2 & 4 & 2 & 1 & 1 & 3 \\ 3 & 1 & 4 & 1 & 1 & 1 & 2 & 1 & 1 \end{pmatrix}$$
$$\boldsymbol{B}_{3} = \begin{pmatrix} 4 & 0 & 1 & 4 & 0 & 3 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 & 1 & 1 & 1 & 2 & 2 & 1 & 3 & 2 \\ 3 & 2 & 1 & 4 & 1 & 2 & 2 & 1 & 3 & 2 \\ 3 & 2 & 1 & 4 & 1 & 2 & 2 & 1 & 1 & 1 \end{pmatrix}$$

