Optical Technologies for very high throughput satellite communications

Knowledge for Tomorrow

2019 Oberpfaffenhofen Workshop on High Throughput Coding

Institute of communications and navigation Ramon Mata Calvo

Global Connectivity with optical free-space communications

- Data retrieval from LEO satellites
 - Direct-downlinks
- Communications in Emergency situations
 - Aeronautical links
- Global Connectivity with GEO satellites
 - Optical high throughput links
- Exploration
 - Deep-Space communications
- Atmospheric Turbulence
 - Research through theory, simulations and demonstrations
 - Compensation methods: adaptive optics

Global connectivity with GEO satellites

- Motivation: Global Networking
- Broadband Internet everywhere
 - User access: internet with 50 Mbit/s and more
 - Data transport: optical infrastructure for space
- Internet availability for Industry 4.0
 - Towards a versatile industry: Smart Service World
 - Adaptive Logistic: world-wide networking of mobile sensors
 - Networking for a cloud-based business model
 - Requirements on security, availability and quality of service (reliability, datarate, low latency requires LEO or HAPS constellations)
- Gaps in broadband access: e.g. 28% in European rural areas
 - Global provision of broadband connectivity using <u>satellite communications</u>

Motivation: satellite optical communications

- Few GEO satellites with worldwide coverage
- Currently: Ka-Band (user + feeder)
 - Ka-Sat (70 Gbps), ViaSat-1 (140 Gbps), ViaSat-2 (350 Gbps)
- GEO satellite communications
 - RF user-link with 50Mbit/s
 - Feeder Links with Terabits/s throughput
- Number of required gateways increases linearly with throughput
- Approach: optical feeder link
 - · every gateway provides full capacity
 - DWDM Technology from fiber communication
- Optical frequencies: several THz of bandwidth and no-regulation

DLR.de • Folie 5

Optical Communications: Atmospheric Channel

- Received signal fluctuations due to atmospheric turbulence
 - Scintillation: phase-distortions lead to Intensity fluctuations
 - Beam wander: uplink pointing errors
- Fading duration between 1 and 10 ms
 - 1 Gbit is lost each 1 ms of fading when transmitting 1 Terabit/s

Atmospheric channel

- SAT
 - Strong fluctuation
 - Almost perfect fibre coupling

- Ground station
 - Aperture averaging
 - More stable signal

Atmospheric channel

- SAT
 - Strong fluctuation
 - Almost perfect fibre coupling

- Ground station
 - Aperture averaging
 - More stable signal

Downlink

Angle of Arrival

Fried parameter r₀

Uplink channel

- # Fades increase with small divergences
- TX Diversity decreases deep fades
 - More fades at -3dB but shorter
 - More surges at +3dB

	210 mm	140 mm	
Fade/Surge Time	20 April-23h B0210-1	25 April-23h B0140-1	
Mean -3dB	10.3 ms	10.6 ms	
#Fades -3dB/s	45	29	
Mean -10dB	2.9 ms	3.9 ms	
#Fades -10dB/s	46	10	
Mean +3dB	7.2 ms	7.2 ms	
#Surges +3dB	22	15.5	

Adaptive optics for phase-correction

- Technology from astronomy
- Phase distortions
 - Coupling losses
- Stronger turbulence conditions
 - Communications scenario
- Wave-front estimation
- Control-loop approaches
- Pre-distortion for uplink

Laser guide stars for communications

- Laser at 589 nm creates an "artificial star"
 Sodium layer of the atmosphere at ~90 km
- Technique used in astronomy for adaptive optics
 - Imaging of astronomical objects
- Reference for the uplink direction
 - Use of adaptive optics in pre-correction
- "Tilt" cannot be directly measured
 - Off-axis telescope
 - Challenge also for astronomy
- Collaboration with ESO, Durham University, INAF

Link budget comparison

- Advantage in distance is lost due to pointing stability
- ~2 dB margin gain for LEO compared to GEO
- It is assumed
 - Bigger telescopes for MEO and GEO
 - TX divergence is optimized for the transmitted power

Link budget	LEO	MEO	GEO
Pointing strategy	Open-loop	Open-loop / DL-tracking	DL-Tracking
Spacecraft altitude [km]	1000.0	20000.0	36000.0
Elevation [º]	30.0	30.0	30.0
Transmitted divergence (e-2-radius) [µrad]	30.1	30.1 / 14.0	6.0
Beam wander or pointing jitter [µrad]	11.2	11.2 / 4.9	1.7
Ground Antenna Gain [dB]	99.5	99.5 / 106.1	113.4
Free-space loss [dB]	-262.8	-285.3	-290.0
Margin w.r.t. GEO [dB]	+27.2	+4.7	0
Mean pointing-loss [dB]	-4.8	-4.8 / -4.3	-2.8
Scintillation margin for 99.99% availability	-6.6	-6.6 / -5.6	-3.7
Atmospheric attenuation + Cloud Margin	-2.0	-2.0	-2.0
Satellite Rx Antenna [cm]	15	30	30
Satellite Rx Antenna Gain [dB]	109.7	115.7	115.7
Margin w.r.t. GEO [dB]	-6.0	0	0
Tx and Rx efficiency	-4.0	-4.0	-4.0
Additional Margin (ancillary losses)	-2.0	-2.0	-2.0
Total Link loss [dB]	-73.1	-89.5 / -81.3	-75.3
Margin w.r.t. GEO [dB]	+2.3	-14.2/-6.0	0

Uplink communications architecture

- Satellite has a limited resources in power, mass and heat dissipation.
 - e.g. Alphabus offers 12-14kW payload power

Very high throughput satellite communications

- Optical Satellite Network, considering node connections between GEO and ground
- · Dedicated platforms vs. application oriented
 - Higher number of platforms, smaller
- GEO as monitoring for the other orbits: higher visibility for traffic management.

Technology Challenges

- Space-qualification for satellite usage
 - DWDM technology, amplifiers, receivers
- Satellite on-board processing
 - Communications architecture
 - Terabit/s throughput on-board processing
- Multiple Terabit/s switching between gateways
 - Network of gateways: ~10 in Europe for 99,9% availability to avoid cloud coverage
- Atmospheric turbulence
 - Mitigation of channel impairments
 - Optimization of the feeder-link

First step: Demonstrate DWDM Technology in relevant environment

Free-space technology demonstration

- Ground link emulating the GEO feeder link
- Measurement of the communications performance with strong fluctuations
- Development of two terminals representing a satellite and a ground station
 - Single-mode fiber coupling

The optical terminals

- Ground station terminal with fiber coupling and adaptive optics
- Point-ahead emulation
 - · lateral shift of downlink beacon in the satellite terminal
 - Point-ahead mirror in the ground station
- Atmospheric turbulence monitoring instruments

٠

DLR

Hardware setup for fiber coupling

· Satellite terminal with single-mode fiber coupling

Free Space Optical Communications AO Demonstrator

- AO System installed at OGS terminal
 - SH-WFS with 8x8 sub-apertures
 - InGaAs, Short Wave Infra-Red WFS detector, running between 500 – 3000Hz
 - 97 Actuator ALPAO DM
 - Transmitted and received beam projected from same DM, so predistortion AO can be demonstrated.
 - Focus Camera observes corrected spot
- Multiple measurement campaigns completed in 2018

Tip/Tilt Correction 0.35 AO Correction Units) 0.30 0.25 (Arbitr 0.20 er 0.15 Po 0.10 0.05 2.00 1.75 1.50 1.25 1.00 1.00 0.75 0.50 0.25 0.00 50 100 150 200 0 Time (s)

AO Performance for fibre coupling and pre-distortion

Power and Scintillation received at OGS, alternating between AO on and off.

Consistently higher power (+3.1dB) and lower scintillation (50% less) with AO

Power and Scintillation received at SAT alternating between AO on and off.

Consistently higher power (+3.1dB) and lower scintillation (50% less)

Coherent Communications system

• Intradyne (digital homodyne) concept developed in 2016 tested for **30G BPSK**^[1]

Resampled Signal

Imbalance Comp

- Minimum lock-time after fading
- · SW complexity vs. HW complexity compared to OPLL
- Mid-2017 [2]
 - 40G receiver
 - More robust timing recovery (Lee algorithm)
 - Equalization
- Fall 2017 integration of I/Q Modulator -> 40G QPSK

[1] J. Surof, J. Poliak, and R. Mata Calvo, "Demonstration of intradyne BPSK optical free-space transmission in representative atmospheric turbulence conditions for geostationary uplink channel," Opt. Lett. 42, 2173-2176, 2017

[2] P. Conroy, J. Surof, J., J. Poliak, J. and R. Mata Calvo, "Demonstration of 40GBaud intradyne transmission through worstcase atmospheric turbulence conditions for geostationary satellite uplink," in Appl. Opt., OSA, 2018, *57*, 5095-5101

13,16 Tbit/s demonstration in 2017

- Collaboration with ADVA
- FSP 3000 Cloudconnect QuadFlexTM
 - DP-16QAM, DP-8QAM, DP-QPSK
- Channels swept with QF
- Power measurement
 - Full spectrum
 - At fixed channel
- DLR: Duplex operation
 - 80Gbps uplink / 20Gbps downlink
- BER evaluation (QF)
 - Post-FEC / Pre-FEC
 - Strong dependence on atmosphere
 - 3-days with various conditions

Summary

- GEO satellites can provide global coverage
 - Modeling the uplink channel in collaboration with Tesat
- WDM technology
 - Demonstrations under strong turbulence conditions
 - In 2016 1.72 Tbit/s with OOK
 - In 2017 13.16 Tbit/s with 16QAM, in collaboration with ADVA
- Coherent communications
 - Technology already space-proven
 - · Digital homodyne have been demonstrated through strong turbulence conditions
- Adaptive Optics
 - For single-mode fiber coupling
 - · Pre-distortion has been demonstrated
- Laser guide stars
 - Currently under test on the Canary Islands, in collaboration with the European Southern Observatory (ESO), European Space Agency (ESA), Durham University and Istituto Nazionale di AstroFisica – Osservatorio Astronomico di Roma (INAF-OAR)

Optical Technologies for very high throughput satellite communications

Institute of communications and navigation Ramon Mata Calvo

2019 Oberpfaffenhofen Workshop on High Throughput Coding

