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Low Density Parity Check (LDPC) Codes

1962: invented by R. G. Gallager

• Performance close to the Shannon limit

• Iterative decoding was initially considered to complex for economic
implementation

1999: re-discovered by MacKay and Neal

• VLSI technology allowed for the implementation of LDPC codes

Today: LDPC codes are optional or mandatory in almost all standards

• Increasingly favored over other codes for high throughput.
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The Dawn of the Happy Scaling Era
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The O�set Min-Sum (MS) Algorithm

The Min-Sum algorithm and its variants are the workhorses of LDPC decoding.

Initialization: Set L0
v based on LLRs from the demodulator and set R0

c,v = 0

Iterations: i = 1 . . . Imax
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Computational Complexity of LDPC Decoding
Consider the computational e�ort per information bit and the required
throughput for di�erent standards and for their di�erent operating modes
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VLSI architectures for LDPC decoding must cover more than 6 orders of
magnitude in throughput and di�erent degrees of recon�gurability
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10GBASE-T 10Gbps Ethernet
10GBASE-T employs a (6,32)-regular (2048,1723) code with rate R = 0.84
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• 384 Check Nodes, 2048 Variable Nodes

• Organized in 6 layers

• 12'288 edges in the corresponding Tanner graph
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Fully Parallel Implementation
Isomorphic architecture: direct mapping of Tanner graph onto silicon
• Instantiate 2048 VNs and 384 check nodes

• Edges are implemented through a global routing network

• Each iteration is carried out in one cycle

CN
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Fully Parallel Implementation
Isomorphic architecture: direct mapping of Tanner graph onto silicon
• Instantiate 2048 VNs and 384 check nodes

• Edges are implemented through a global routing network

• Each iteration is carried out in one cycle

Straightforward reference implementation in 65nm
CMOS illustrates the main implementation issue

• Throughput: 1.7 Gbps

• Silicon area: 18.2mm2

• Core utilization: 25% [Mohsenin et al., ISSCC 2008]

The exchange of messages between VNs and CNs requires more than
100'000 global point-to-point connections
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Layered Message Passing for Time Sharing

Layered decoding: Modify the schedule of VN and CN operations

• Process one layer at a time, but update VNs after each layer
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Layered Message Passing for Time Sharing

Layered decoding: Modify the schedule of VN and CN operations

• Process one layer at a time, but update VNs after each layer

VN VN VN VN layer 1

layer 2

layer n

H =

n

Layered decoding enables e�cient time sharing of resources
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Impact of Layered Decoding on Performance
Using a layered schedule results in a behavior that is di�erent from message
passing with a �ooding schedule
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BPSK, AWGN, (2048,1723) LDPC code for 10GBASE-T with OMS decoding, β = 1.0

The layered schedule improves convergence
↓

Reduces throughput loss from resource sharing.
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Solving the Routing Issue with Circuit
Techniques

Main issue: Routing overhead is one of the main limitations (density &
frequency)

Solution: Time share routing wired for VN→CN and CN→VN routing
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Enables 50% less routing wires and enables 84% area utilization
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10Gbps LDPC Implementation Results
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Design this Zhang Mohsenin Liu
work JSSC'10 TCAS'10 TCAS'08

Tech. [nm] 90 65 65 90

Algorithm OMS OMS split-row-16 SPA

Scheduling layered �ooding �ooding �ooding

Area [mm2] 5.35 5.35 3.8 14.5

Speed [Gb/s] 11.69 13.3 13.8 5.30

Energy [pJ/bit] 133.37 210.52

10/29



10Gbps LDPC Implementation Results

CN
group

CN
group

CN
group

CN
group

VN

3.43 mm

1.56 mm

Design this Zhang Mohsenin Liu
work JSSC'10 TCAS'10 TCAS'08

Tech. [nm] 90 65 65 90

Algorithm OMS OMS split-row-16 SPA

Scheduling layered �ooding �ooding �ooding

Area [mm2] 5.35 5.35 3.8 14.5

Speed [Gb/s] 11.69 13.3 13.8 5.30

Energy [pJ/bit] 133.37 210.52

Throughput scaling beyond 10Gbps limited by sequential processing and routing
overhead which limits frequency.
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Unrolled Fully Parallel Implementation
Unrolled architecture: mapping of all decoding iterations onto silicon

• Each iteration is instantiation of 2048 VNs and 384 CNs (two stages)
• Decoder architecture consists of distinct sets of VN and CN stages for
each iteration

• Connections are realized through routing networks between CN/VN stages
• One decoded codeword per cycle

VN VN VN VN

H =

CN CN CNCN

CN CN CNCN

Rc,v

Qv,c H =

hard-wired, uni-directional 
routing network

11/29



Unrolled Fully Parallel Implementation

Bottlenecks:

• Very large area

• Each routing network still requires more than 50'000 interconnects
(12'288 messages of 4-5 bits) → severe routing congestion
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Unrolled Fully Parallel Implementation

Bottlenecks:

• Very large area

• Each routing network still requires more than 50'000 interconnects
(12'288 messages of 4-5 bits) → severe routing congestion

The only available implementation in 65nm CMOS:

• Throughput: 160 Gbps

• Silicon area: 13.6mm2

• Code speci�cation: N = 672, dC = 6, dV = 3

[Schlafer et al., SiPS 2013]

Implementation for longer codes with larger CN/VN degree is NOT trivial.

More complex codes require further reduction of the routing congestion.
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Unrolled Architecture: Layout Considerations
Flat layout beyond the capabilities of automatic P&R tools.

Structured hierarchical layout required for acceptable results.

Region for CN I=1

Region for CN I=2

.

.

.

Region for VN I=1

Region for DN

Region for VN I=2 Area for registers and 
repeaters

Area for CN 

macros

Area for VN 

macros

• Structured �oorplan based on message-passing data �ow
• Package VN/CN macros as standard-cells → allows using the more capable
standard-cell (instead of macro) APR tool for P&R

• Optimize VN/CN macro size & pins and limit in-cell routing to 3 layers

Even with structured layout, routing overhead remains prohibitive
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Serial Message-Transfer Architecture
Main idea: Send/receive messages serially.
• Transfer each message bit-by-bit through a single wire

• Overlap (pipeline) message transfer with processing

• Process two codewords interleaved

• Two clocks: slow clock for logic, fast clock for bit-transfer (routing)
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Serial Message-Transfer: Pros & Cons
Advantages:

• Routing congestion is signi�cantly reduced

• Overlapped processing of two codewords hides message transfer delay

• Signal routing in a separate pipeline stage (no increase in logic delay)

Disadvantages:

• Number of registers increases by 3x

• Decoder latency increases by 2x

• Minimum clock period limited by

Tclk > min
(
Tclklogic , Qmsg × Tclkrouting

)
Q’4 Q’3 Q’2 Q’1 Q’0
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.  .  .
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D Q

D Q

D Q D Q D Q

D Q D Q D Q D Q
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D Q
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Shift Registers

Memory Registers

D Q D Q D Q D Q

Other outputs

Other inputs
.  .  .

Parallel-to-Serial

F

CLKS

CLKF

CLKF

CLKS

Routing delay must be signi�cantly shorter than logic delay.
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Min-Sum Message Quantization
Message quantization (wordlength) Qmsg has a critical impact on
• Complexity (area and delay) of VNs and CNs
• Message-routing overhead between stages
• Decoder performance (FER)
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Message quantization with Qmsg ≥ 5 bit required.
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Unrolled Serial Message-Transfer Results
Example: Quantization of messages with Qmsg = 5 bit
• Automatic P&R is �nally feasible with 66.4% layout density
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Layout in 28 nm FD-SOI technology

Throughput: 271Gbps

• Required time for processing: Tlogic = 2.38ns

• Required time for transferring one bit: Trouting = 1.51ns

• Critical path: Tclk > min
(
Tclklogic , Qmsg × Tclkrouting

)
= 7.55 ns

Decoding throughput is limited by serial message transfer of 5 bit messages

17/29



Unrolled Serial Message-Transfer Results
Example: Quantization of messages with Qmsg = 5 bit
• Automatic P&R is �nally feasible with 66.4% layout density

2.
99

 m
m

7.
78

 m
m

Layout in 28 nm FD-SOI technology

Throughput: 271Gbps

• Required time for processing: Tlogic = 2.38ns

• Required time for transferring one bit: Trouting = 1.51ns

• Critical path: Tclk > min
(
Tclklogic , Qmsg × Tclkrouting

)
= 7.55 ns

Decoding throughput is limited by serial message transfer of 5 bit messages

17/29



Unrolled Serial Message-Transfer Results
Example: Quantization of messages with Qmsg = 5 bit
• Automatic P&R is �nally feasible with 66.4% layout density

2.
99

 m
m

7.
78

 m
m

Layout in 28 nm FD-SOI technology

Throughput: 271Gbps

• Required time for processing: Tlogic = 2.38ns

• Required time for transferring one bit: Trouting = 1.51ns

• Critical path: Tclk > min
(
Tclklogic , Qmsg × Tclkrouting

)
= 7.55 ns

Decoding throughput is limited by serial message transfer of 5 bit messages

17/29



Quantized Message Passing
Motivation: Message wordlength has signi�cant (linear) impact on
throughput with serial message transfer and in�uences logic area and delay.

Conventional Message-Passing

Conventional Arithmetic Update Rules
use−−→ Uniform Quantization

• E�cient arithmetic circuits, but large wordlengths for good
error-correcting performance due to large dynamic range.

Quantized Message-Passing

Non-Uniform Quantization
defines−−−−→ Update Rules

• Potential for signi�cant wordlength reduction and performance
improvement.
• Update rules must be implemented as general look-up tables, which can
require signi�cant area.
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Look-Up Table Design
Numerous LUT design methods [Planjery'13, Declercq'13, Cai'14, Kurkorski'14].

• Our method is similar to Kurkorski'14 and is based on an information
theoretic criterion (Information Bottleneck (IB)).

LUT Design Principle

Maximization of mutual information between messages and codeword bits.

• Mutual information between two RVs M and X:

Denoted by I(M ;X).
Quanti�es the information about X contained in M (and vice-versa).
Depends on the joint distribution of M and X:

pM,X(m,x) = pX(x)pM |X(m|x)

pX(x) is usually known, but we need to calculate pM |X(m|x).

19/29



Look-Up Table Design
Numerous LUT design methods [Planjery'13, Declercq'13, Cai'14, Kurkorski'14].

• Our method is similar to Kurkorski'14 and is based on an information
theoretic criterion (Information Bottleneck (IB)).

LUT Design Principle

Maximization of mutual information between messages and codeword bits.

• Mutual information between two RVs M and X:

Denoted by I(M ;X).
Quanti�es the information about X contained in M (and vice-versa).
Depends on the joint distribution of M and X:

pM,X(m,x) = pX(x)pM |X(m|x)

pX(x) is usually known, but we need to calculate pM |X(m|x).

19/29



Look-Up Table Design
Numerous LUT design methods [Planjery'13, Declercq'13, Cai'14, Kurkorski'14].

• Our method is similar to Kurkorski'14 and is based on an information
theoretic criterion (Information Bottleneck (IB)).

LUT Design Principle

Maximization of mutual information between messages and codeword bits.

• Mutual information between two RVs M and X:

Denoted by I(M ;X).
Quanti�es the information about X contained in M (and vice-versa).
Depends on the joint distribution of M and X:

pM,X(m,x) = pX(x)pM |X(m|x)

pX(x) is usually known, but we need to calculate pM |X(m|x).

19/29



Look-Up Table Design
Numerous LUT design methods [Planjery'13, Declercq'13, Cai'14, Kurkorski'14].

• Our method is similar to Kurkorski'14 and is based on an information
theoretic criterion (Information Bottleneck (IB)).

LUT Design Principle

Maximization of mutual information between messages and codeword bits.

• Mutual information between two RVs M and X:
Denoted by I(M ;X).

Quanti�es the information about X contained in M (and vice-versa).
Depends on the joint distribution of M and X:

pM,X(m,x) = pX(x)pM |X(m|x)

pX(x) is usually known, but we need to calculate pM |X(m|x).

19/29



Look-Up Table Design
Numerous LUT design methods [Planjery'13, Declercq'13, Cai'14, Kurkorski'14].

• Our method is similar to Kurkorski'14 and is based on an information
theoretic criterion (Information Bottleneck (IB)).

LUT Design Principle

Maximization of mutual information between messages and codeword bits.

• Mutual information between two RVs M and X:
Denoted by I(M ;X).
Quanti�es the information about X contained in M (and vice-versa).

Depends on the joint distribution of M and X:

pM,X(m,x) = pX(x)pM |X(m|x)

pX(x) is usually known, but we need to calculate pM |X(m|x).

19/29



Look-Up Table Design
Numerous LUT design methods [Planjery'13, Declercq'13, Cai'14, Kurkorski'14].

• Our method is similar to Kurkorski'14 and is based on an information
theoretic criterion (Information Bottleneck (IB)).

LUT Design Principle

Maximization of mutual information between messages and codeword bits.

• Mutual information between two RVs M and X:
Denoted by I(M ;X).
Quanti�es the information about X contained in M (and vice-versa).
Depends on the joint distribution of M and X:

pM,X(m,x) = pX(x)pM |X(m|x)

pX(x) is usually known, but we need to calculate pM |X(m|x).

19/29



Look-Up Table Design
Numerous LUT design methods [Planjery'13, Declercq'13, Cai'14, Kurkorski'14].

• Our method is similar to Kurkorski'14 and is based on an information
theoretic criterion (Information Bottleneck (IB)).

LUT Design Principle

Maximization of mutual information between messages and codeword bits.

• Mutual information between two RVs M and X:
Denoted by I(M ;X).
Quanti�es the information about X contained in M (and vice-versa).
Depends on the joint distribution of M and X:

pM,X(m,x) = pX(x)pM |X(m|x)

pX(x) is usually known, but we need to calculate pM |X(m|x).

19/29



Look-Up Table Design: Variable Node
Use Density Evolution to compute message probability-mass function:
• CN output messages:

p
(i)
m|x(µ̄|x) =

∑
µ∈Mµ̄

(
1

2

)dc−2 ∑
x:

⊕
x=x

dc−1∏
j=1

p
(i)
m|x(µj |xj),

• VN input messages:

p
(i)
L,m|x(L, µ̄|x) =

∑
x: x0=···=xdv−1=x

pL|x(L|x0)

dv−1∏
j=1

p
(i)
m|x(µ̄j |xj).

Variable Node LUT Design: Optimization Problem

Φ(i) MI
v = arg max

Q∈Q
I
(
Q(L,m(i)); x

)
.

• Can be solved with complexity O
(
|L|3|M|3(dv−1)

)
[Kurkorski'14].

• Check node LUTs can be designed similarly. Due to complexity issues, in
this work, we only examine LUT-based VNs for regular LDPC codes.
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LUT Decoder Performance & Design SNR
LUT design depends on channel LLR distribution pL|x(L|x0).
• AWGN channel: LUT design is SNR speci�c.

• Implementation constraint: same LUT used for di�erent SNRs

3 3.5 4 4.5 5 5.5 6

100

10−2

10−4

10−6

10−8

Eb/N0 [dB]

F
E

R

Min-LUT, γ = 4.15 dB

Min-LUT, γ = 4.0 dB

Min-LUT, γ = 3.85 dB

• Lower design SNR → better waterfall region performance.
• Higher design SNR → better error �oor region performance.
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Practical Considerations: VN LUT Size
Straightforward LUT design:

• VN LUT size: dv|L||M|dv−1 log |M| bits.
LUT

µ̄ µ̄ µ̄ µ̄ µ̄ L

µ

Example (Single LUT)

• |L| = |M| = 32, dv = 6: 984 kbits per VN

Solution: Decompose large LUT into a tree of
smaller LUTs.

• Signi�cant LUT-size reduction

• Small performance loss expected rightarrow
Complexity/performance tradeo�

• Structure and input ordering plays a role

LUT

LUT

LUT

LUT

µ̄ µ̄

LUT

µ̄ µ̄ µ̄ L

µ

Example (LUT Tree)

• |L| = |M| = 32, dv = 6: 26 kbits per VN
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Practical Considerations: LUT Tree Structure
• Which trees are preferable?

Best performance → single-node tree.
Lowest complexity → full binary tree.

• In-between?

Ordering based on partial order ≥T .
Ordering based on heuristic cumulative leaf-root distance metric λ.

T1: λ = 10 T2: λ = 11 T3: λ = 14 T4: λ = 19

Φ

Φ

µ µ

Φ

µ µ

µ L

Φ

Φ

µ µ µ

Φ

µ µ

L

Φ

Φ

Φ

µ µ

Φ

µ µ

µ L

Φ

Φ

Φ

Φ

µ µ

Φ

µ µ

µ

L

σth = 0.5330 σth = 0.5328 σth = 0.5313 σth = 0.5305

• T1 ≥T T3 ≥T T4, but, e.g., T2 and T1 can not be compared with ≥T .
• Heuristic metric agrees well with density evolution results.
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Practical Considerations: Channel LLR Position
on LUT Tree
• Good solution: L adjacent to the root of the tree.

• Bad solution: L far away from the root of the tree.
• Ideal solution: L close to root for �rst iterations, farther from root as it
becomes more irrelevant.

3 3.5 4 4.5 5 5.5 6

100

10−2

10−4

10−6

Eb/N0 [dB]

F
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R

Tree T4 (L at root)

Tree T ′
4 (T4 with L at leaf)

Tree T4 for ` ≤ 4 and T ′
4 for ` > 4
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Practical Considerations: Check Node
Check nodes are ideally also be designed using LUTs.

Unfortunately, CNs can have a large degree (number of inputs) → Even
tree-structured LUTs become too large/complex.

• For symmetric channels:

Ensure labels are sorted identically to message values:

µk < µl ⇔ B(µk) < B(µl), ∀k, l ∈ 1, . . . , |M|.

Message sign follows from index:

sign(µk) =

{
−1, 1 ≤ k ≤ |M|

2
,

+1, |M|
2

< k ≤ |M|.

Minimum can be found directly from indices.

�Min-LUT� Decoder

Entire decoder can be implemented based on message labels and CN
uses standard min-sum rule.
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tree-structured LUTs become too large/complex.

• For symmetric channels:
Ensure labels are sorted identically to message values:

µk < µl ⇔ B(µk) < B(µl), ∀k, l ∈ 1, . . . , |M|.
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Quantized Message Passing: Quantization
FER performance comparison to Min-Sum decoder with message quantization:
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• Message quantization with Qmsg ≥ 3 bit is su�cient.

Quantized Message Passing provides better performance than regular
Min-Sum with 40% fewer message quantization bits.
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Unrolled Quantized Message Passing: Results
Quantization of messages with Qmsg = 3 bit
• Automatic P&R is �nally feasible with 65.9% layout density

Layout in 28 nm FD-SOI technology

Unrolled Min-Sum Unrolled LUT

Msg. Quantization 5 bit 3 bit

Components area (CN/VN) 3607µm2 / 755µm2 1510µm2 / 646µm2

Delay (logic/routing) 2.38 ns / 5×1.51 ns 1.42 ns / 3×1.16 ns
Core area 23.3mm2 16.2mm2

Throughput 271Gbps 588Gbps

Energy e�ciency 45.2 pJ/bit 22.7 pJ/bit
Area e�ciency 11.6 Gpbs/mm2 36.3Gpbs/mm2
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Conclusions

• Channel codes are moving to higher and higher data rates

• Process scaling provides diminishing returns in speed and power

• Highly parallel architectures can only partially meet the increasing demand
for high throughput

• Main limitations

Routing overhead
Registers and storage

• Further algorithm improvements needed to keep complexity under control

• Need more collaboration between algorithm and architecture design

• Wordlength reduction is one of the most promising objectives
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More Information & Code Online

https://www.nt.tuwien.ac.at/UNFOLD
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