Good LDPC decoders with exchanged messages of size 1, 2 and 3 bits.

Workshop on Coding for Future Optical Communications (Munich, 27 February 2018)

Emmanuel Boutillon in collaboration with Chris Winstead, David Declercq and Franklin Cochachin

07/12/2018

• Syndrome Bit Flipping:

BSC channel, no extrinsic, (Bit Flipping Algorithm).

 Noisy Gradient Bit Flipping Decoder: AWGN Channel, no extrinsic (Bit Flipping Algorithm).

Sign-Preserving algorithm.
 AWGN Channel, message passing algorithm

• Syndrome Bit Flipping:

BSC channel, no extrinsic, (Bit Flipping Algorithm).

 Noisy Gradient Bit Flipping Decoder: AWGN Channel, no extrinsic (Bit Flipping Algorithm).

Sign-Preserving algorithm.
 AWGN Channel, message passing algorithm

For LDPC code IEEE802.3 (size 2048, rate 0.84, $d_v = 6$, $d_c = 32$):

20 errors among 2048 bits generate in average 60 unsatisfied parities among 384.

$$\binom{2048}{20} = 10^{48}$$
 but $\binom{384}{60} = 10^{70}!$

Syndrome can be viewed as a compressed representation of the error pattern:

It should be possible to consider only the syndrome to suppress the error floor.

Old idea [1]: used the number of unsatisfied check connected to a variable to flip its state.

[1] Raul Benet, Adriaan De Lind Van Wijngaarden, Ralf Dohmen, Thomas Richardson, Rudiger Urbanke, "Iterative decoding of low-density parity-check (LDPC) codes", Patent EP1643653A1, 5 april 2006.

First decoder failed: the final state x doesn't respect H.x = 0.

 $x = c + err = S = H.x \mod 2 = H(c+err) \mod 2 = 0 + H.err \mod 2$ => syndrom S depends only of the error vector err. 2 1.5 erreur 1 0.5 0 200 400 600 1400 800 1000 1200 1600 1800 2000 n

20 errors, 92 checks non fulilled (sum(S) = 92)

Value of E at the first iteration

Sequence $\theta = 4 + 4 + 4 + 3 + 3 + 3$ nb_err = 20 11 6 5 3 0 nb_synd = 92 44 22 18 14 0

Impact of threshold sequence

NOTE: there is error patterns solved by [3 3 3 3] but not by [4 4 4 3 3] !

A threshold sequence is « a decoding key ».

Each key can resolve a subset of error patterns.

SBF alone in BSC for IEEE 802.3 $(d_v,d_c)=(6,32), N=2048$

SBF alone can outperform PGDBF at low FER

[1] K. Le et al. "A novel high-throughput, low-complexity bit-flipping decoder for LDPC codes,"

Lab<mark>-</mark>STICC

Example of SBF Post-Processing $d_v = 5$, $d_c = 20$, N =10240

• Syndrome Bit Flipping:

BSC channel, no extrinsic, (Bit Flipping Algorithm).

 Noisy Gradient Bit Flipping Decoder: AWGN Channel, no extrinsic (Bit Flipping Algorithm).

Sign-Preserving algorithm.
 AWGN Channel, message passing algorithm

Optimum decoding

Bit of a codeword are transmitted in a noisy channel.

$$b_{j} \in \{\underbrace{0,1}\} \underbrace{\text{Mod.}}_{x_{j} \in \{-1,+1\}} \underbrace{x_{j} = -1^{bj}}_{x_{j} \in \{-1,+1\}} \underbrace{y_{j} = x_{j} + w_{j}}_{\text{Démod.}} \underbrace{y_{j} = x_{j} + w_{j}}_{\text{Démod.}}$$

Decision with channel value:

$$x_i = \operatorname{sgn}(y_i)$$

ML decoder (optimal decoder):

$$\hat{x} = \arg\max_{x \in C} \left\{ \sum_{i=1}^{n} x_i y_i \right\}$$

Check with sign (BPSK 0=>1, 1=>-1)

If there is no error, then, for all
$$j = 1...m$$
 $S_j = \prod_{k \in N(j)} x_k = +1$

$$\hat{x} = \arg\max_{x \in C} \left\{ \sum_{i=1}^{n} x_i y_i \right\} \quad <=> \quad \hat{x} = \arg\max_{x \in C} \left\{ \sum_{i=1}^{n} x_i y_i + \sum_{j=1}^{m} S_j \right\}$$

Try to maximise the energy function $E(x_1,...,x_n) = \sum_{i=1}^n x_i y_i + \sum_{j=1}^m S_j$

Gradient bit flipping algorithm

Let assume that x is not a codeword

Question: do we increase energy function flipping bit $x_{/}$?

If x_i flips to $\overline{x_i}$ then

$$E_{old} \Rightarrow E_{new} = E_{old} + (\overline{x}_l - x_l) \frac{dE}{dx_l} = E_{old} - 2x_l \frac{dE}{dx_l}$$

Thus, energy increases only if $E_l = x_l \frac{dE}{dx_l} < 0$. with $E_l = x_l \frac{dE}{dx_l} = x_l y_l + \sum_{j \in N(l)} S_j$

Parallel update rule: flip the bits / verifying that $E_i < \theta$, with θ a negative threshold.

Problem with Gradient bit flipping algorithm

NGDBF alone

Performance reference

Mixte NGDBF and GDBF

Faster convergence, but FER degradation

Every 200 cycles, 1/3 of states take their initial value.

Faster convergence, better performance.

Réinitialisation partielle + NGDBF simple.

NGDBF FER = 0.0278

 $\begin{array}{l} \mathsf{NGDBF} + \mathsf{GDBF} \\ \mathsf{FER} = 0.0585 \end{array}$

NGDBF + GDBF + partial restart FER = 0.0188

NGDBF alone + Partial restart FER = 0.0333

Lower performance because of lower convergence

Nouveau NGDBF $d_v = 5$, $d_c = 20$, N =10240

NGDBF + SBF for IEEE 802.3 (d_v,d_c)=(6,32), N=2048

• Syndrome Bit Flipping:

BSC channel, no extrinsic, (Bit Flipping Algorithm).

 Noisy Gradient Bit Flipping Decoder: AWGN Channel, no extrinsic (Bit Flipping Algorithm).

 Sign-Preserving algorithm. AWGN Channel, message passing algorithm

• Syndrome Bit Flipping:

BSC channel, no extrinsic, (Bit Flipping Algorithm).

 Noisy Gradient Bit Flipping Decoder: AWGN Channel, no extrinsic (Bit Flipping Algorithm).

 Sign-Preserving algorithm. AWGN Channel, message passing algorithm

Let's us shift toward slides generated by latex...

Sign-Preserving algorithm or "forget the zero"

Franklin Cochachin*[†], Emmanuel Boutillon*, and David Declercq[†]

*Lab-STICC, UMR 6285, Université de Bretagne Sud, Centre de Recherche BP 92116, Lorient 56321, France [†]ETIS, ENSEA/University of Cergy-Pontoise/CNRS, 95014 Cergy-Pontoise, France

NAND Project: Funded by ANR, grant number ANR-15-CE25-0006-01

February 27, 2019

Standard Offset Min-Sum Decoders

2 Sign-Preserving Min-Sum (SP-MS) Decoders

3 Optimization of Sign Preserving Min-Sum Decoders

4 Hardware implementation

5 Conclusions

		୬୯୯
SP-MS Decoders	February 27, 2019	2 / 28

Standard Offset Min-Sum Decoders

2 Sign-Preserving Min-Sum (SP-MS) Decoders

3 Optimization of Sign Preserving Min-Sum Decoders

4 Hardware implementation

5 Conclusions

	< c	(E) < E) = E	୬୯୯
SP-MS Decoders		February 27, 2019	3 / 28

Classical OMS decoder: quantification of channel LLR

Quantified intrinsic information I_n is obtained from channel LLR y_n as $I_n = \mathcal{Q}(\alpha \times y_n)$, with $y_n \in \mathbb{R}$, α a scaling factor and \mathcal{Q} a quantification rules from \mathbb{R} to $\mathcal{A}_C = \{-3, -2, -1, 0, +1, +2, +3\}$ defined as $\mathcal{Q}(a) = \mathcal{S}_3(\lfloor a + 0.5 \rfloor)$, with \mathcal{S}_3 the saturation function toward [-3, 3].

Among the 8 levels of a 3 bits representation, only 7 are used.

	۹ 🗆	· · · · · · · · · · · · · · · · · · ·	୬୯୯
SP-MS Decoders		February 27, 2019	4 / 28

Low precision Offset Min-Sum Based Decoders

• Update rule at a CNU

• Note that for low precision q = 3 (same for q = 4), the offset applied in CNUs only gives us the possibility to use 5 values $(m_{c_m \to v_n}^{(\ell)} \in \{-2, -1, 0, +1, +2\})$ instead of the 7 values of \mathcal{A}_C .

SP-MS Decoders			February 27, 2019	9	5 / 28
	۰ 🗆	▶ ∢ 🗗 ▶	米 臣 利 米 臣 利 二	æ.,	うくぐ

Low precision Offset Min-Sum Based Decoders

• Update rule at a VNU

	< 🗆	• • @ •	・ヨトー	ヨト	2	୬୯୯
SP-MS Decoders			February	27, 201	9	6 / 28

Low precision Offset Min-Sum Based Decoders

From the analysis of OMS-based decoders with q = 3

 $\begin{array}{l} (i) \text{ the quantized LLRs } I_n \in \mathcal{A}_C = \{-3, -2, -1, 0, +1, +2, +3\}, \\ (ii) \text{ v-to-c messages } m_{v_n \to c_m}^{(\ell+1)} \in \mathcal{A}_C = \{-3, -2, -1, 0, +1, +2, +3\}, \text{ and} \\ (iii) \text{ c-to-v messages } m_{c_m \to v_n}^{(\ell)} \in \mathcal{A}_C \backslash \{-3, +3\} = \{-2, -1, 0, +1, +2\}. \end{array}$

The OMS-based decoders are suboptimal

It can be clearly noted that all combinations that can be obtained from $q=3\ {\rm bits}$ is not used.

How to use the 8 quantization levels for precision q=3

We define a new decoder called Sign-Preserving decoder where:

- The quantization of LLRs has to be changed.
- CNU has to be changed.
- VNU has to be changed.

SP-MS Decoders

February 27, 2019 7 / 28

Standard Offset Min-Sum Decoders

2 Sign-Preserving Min-Sum (SP-MS) Decoders

3 Optimization of Sign Preserving Min-Sum Decoders

4 Hardware implementation

5 Conclusions

	< □ >	(Ξ) (Ξ) = Ξ	୬ବଙ
SP-MS Decoders		February 27, 2019	8 / 28

Quantization used for Sign-Preserving Min-Sum Decoders

- In order to use the 8 levels of q = 3 bits, we define the message alphabet as $A_S = \{-3, -2, -1, -0, +0, +1, +2, +3\}$. Using the sign-and-magnitude representation we have $100_2 = -0$, $000_2 = +0$, etc.
- A new quantification process Q^* is used: $I_n = Q^* (\alpha \times y_n) \in \mathcal{A}_S$ where $Q^* (a) = (\operatorname{sign}(a), \mathcal{S}_3 (\lceil \alpha \times |a| \rceil - 1))$

The *channel gain factor* α represents a degree of freedom in the decoder definition.

SP-MS Decoders

February 27, 2019 9 / 28

CNU of Sign-Preserving Min-Sum Decoders

The update rule at a CNU can be written in two equivalent ways.

VNU of Sign-Preserving Min-Sum Decoders

Moving the offset from CNs to VNs, the update rule at a VNU of OMS-based decoders can be rewritten as

$$m_{v_n \to c_m}^{(\ell+1),U} = I_n + \sum_{c \in \mathcal{V}(v_n) \setminus \{c_m\}} m_{c \to v_n}^{(\ell)}.$$

The offset is subtracted before saturation to allow -3 and 3 values in the variable to check message.

$$m_{v_n \to c_m}^{(\ell+1)} = \operatorname{sign}\left(m_{v_n \to c_m}^{(\ell+1),U}\right) \times \mathcal{S}_3\left(\max\left(\left|m_{v_n \to c_m}^{(\ell+1),U}\right| - 1, 0\right)\right)$$

Problem of the update rule at VNUs

The v-to-c message $m_{v_n \to c_m}^{(\ell+1)}$ can be zero, zero does not have any information about the bit value, this means that the VNU can erase the bit value.

▲□ ト ▲ □ ト ▲ 三 ト ▲ 三 ト ▲ 三 少 Q (~
February 27, 2019 11 / 28

SP-MS Decoders

Update rules for SP-MS Decoders

Let us denote by $\mu_{v_n\to c_m}^{(\ell)}$ the sign-preserving factor of the message $m_{v_n\to c_m}^{(\ell+1)}$, defined as

$$\mu_{v_n \to c_m}^{(\ell)} = \xi \times \operatorname{sign}(I_n) + \sum_{c \in \mathcal{V}(v_n) \setminus \{c_m\}} \operatorname{sign}\left(m_{c \to v_n}^{(\ell)}\right),$$

where
$$\xi = \begin{cases} 0, d_v = 2, \\ 1, d_v \in \{3, 5, 7, ...\}, \\ 2, d_v \in \{4, 6, 8, ...\}. \end{cases}$$

By construction $\mu_{v_n \to c_m}^{(\ell)}$ take its value between $\{-1, 1\}$ for $d_v = 2,$
 $\{-d_v, -d_v + 2, ..., -1, 1, ..., d_v\}$ for d_v odd and $\{-d_v - 1, -d_v + 1, ..., -1, 1, ..., d_v + 1\}$ for d_v even.

	< □	(∄)	<	く置き	Э.	$\mathfrak{I} \mathfrak{Q} \mathfrak{Q}$
SP-MS Decoders			February	27, 2019		13 / 28

Update rules for SP-MS Decoders

 \bullet Let us redefined $m_{v_n \rightarrow c_m}^{(\ell+1),U}$ as

$$m_{v_n \to c_m}^{(\ell+1),U} = \frac{\mu_{v_n \to c_m}^{(\ell)}}{2} + I_n + \sum_{c \in \mathcal{V}(v_n) \setminus \{c_m\}} m_{c \to v_n}^{(\ell)}$$

•
$$m_{v_n \to c_m}^{(\ell+1),U}$$
 takes its value in the set
 $\mathcal{A}_U = \{\dots, -1.5, -0.5, +0.5, +1.5, \dots\}.$

 \bullet and we obtain a message $m_{v_n \rightarrow c_m}^{(\ell+1)}$ that has always a defined sign as

$$m_{v_n \to c_m}^{(\ell+1)} = \left(\operatorname{sign}\left(m_{v_n \to c_m}^{(\ell+1), U} \right), \mathcal{S}_3\left(\max\left(\left\lfloor \left| m_{v_n \to c_m}^{(\ell+1), U} \right| \right\rfloor - 1, 0 \right) \right) \right).$$

	◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶	E nac
SP-MS Decoders	February 27, 2019	14 / 28

Standard Offset Min-Sum Decoders

2 Sign-Preserving Min-Sum (SP-MS) Decoders

3 Optimization of Sign Preserving Min-Sum Decoders

4 Hardware implementation

5 Conclusions

	<□> <酉> <酉> <酉> <三> <三> <三	છે ગ
SP-MS Decoders	February 27, 2019	15 / 28

Optimization of Sign-Preserving Min-Sum Decoders

Thanks to density evolution, we can assess the optimal saturation rules at variable node level. For example, for $q_{ch} = 3$ (channel quantization), q = 3 (message quantization), $(d_v, d_c) = (4, 8)$ we obtained:

MS Decoder	OMS decoders	Optimized SP-MS	DE gain	SNR gain
$\delta_{db} = 2.736$	$\delta_{db} = 2.322$	$\delta_{db} = 1.982$	0.3399	0.32

SNR gains in the waterfall correspond to what was predicted with DE. SP-MS Decoders February 27, 2019 16 / 28

SP-MS decoders for (5,20)-regular LDPC codes

Figure: FER performance of SP-MS decoders for precision $q \in \{2, 3, 4\}$.

SD MS Decedere		17 / 09
SP-IVIS Decoders	February 27, 2019	11/20

SP-MS decoders for (6,32)-regular LDPC codes

Figure: FER performance of SP-MS decoders for precision $q \in \{2, 3, 4\}$.

	< c	< ₫ >	< ₹ €	◆■◆	æ	୬୯୯
SP-MS Decoders			Februar	y 27, 2019		18 / 28

SP-MS decoders for (4,64)-regular LDPC codes

Figure: FER performance of SP-MS decoders for precision $q \in \{2, 3, 4\}$.

	◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶	12	$\mathcal{O}\mathcal{Q}$
SP-MS Decoders	February 27, 20	19	19 / 28

SP-MS decoders for (3,18)-regular LDPC codes

Figure: FER performance of SP-MS decoders for precision $q \in \{3, 4\}$.

SP MS Decedere		Fobruar	, 27, 2010	-	20 / 22
SF-INIS Decouers		rebruar	/ 2/, 2019		20 / 20

Qualitative result obtained by SP-MS algorithm

For $(q_{ch},q)=(4,4),\, {\rm SP-MS}$ gives small gain compared to MS or OMS

For $(q_{ch},q)=(4,3),\, {\rm SP-MS}$ is almost equivalent to SP-MS with $(q_{ch},q)=(4,4)!$

For $(q_{ch},q)=(3,3),$ SP-MS gives 0.2 up to 0.4 dB of gain compared to MS or OMS.

For $(q_{ch}, q) = (3, 2)$, SP-MS is almost equivalent to SP-MS with $(q_{ch}, q) = (3, 3)!$.

SP-MS Decoders

Standard Offset Min-Sum Decoders

2 Sign-Preserving Min-Sum (SP-MS) Decoders

3 Optimization of Sign Preserving Min-Sum Decoders

4 Hardware implementation

5 Conclusions

	4	▶ ★ 臣 ▶ ★ 臣 ▶	æ	୬୯୯
SP-MS Decoders		February 27, 2019		22 / 28

Synthesis results for regular LDPC Codes

IEEE 802.3 LDPC code: Rate 0.8143 (2048, 1723) with regular (6, 32) degree distribution, quantification (3,3).

	This work	Ghanaatian,2018,[2]	Zhang,2010,[3]		
Technology	28nm FDSOI	28nm FDSOI	65nm CMOS		
Decoder	SP-MS	finite-alphabet	OMS		
Quantization	3 bits	3 bits	4 bits		
Iterations	9+6	5	8+6		
Architecture	full-parallel	unrolled full-parallel	partial-parallel		
E_b/N_0 @ FER= 10^{-10}	5.03 dB	5.51 dB	4.98 dB		
Frequency	500 MHz [†]	862 MHz	$700 \xrightarrow{28nm} 1000 \text{ MHz}$		
Core area	$2.56 \text{ mm}^{2\dagger}$	16.2 mm^2	$5.05 \xrightarrow{28nm} 1.77 \text{ mm}^2$		
Throughput	$68.3 \text{ Gbit/s}^{\dagger}$	588 Gbit/s	$13.3 \xrightarrow{28nm}$ 19 Gbit/s		
Hardware efficiency	26.7 Gbit/s/mm 2†	36.3 Gbit/s/mm^2	$2.63 \xrightarrow{28nm} 10.7 \text{ Gbit/s/mm}^2$		
Throughput (4.5 dB)	256 Gbit/s/mm 2†	588 Gbit/s/mm 2	$33.3 \xrightarrow{28nm} 48.2 \text{ Gbit/s/mm}^2$		
Hardware efficiency (4.5 dB)	100 Gbit/s/mm 2†	36.3 Gbit/s/mm^2	$6.59 \xrightarrow{28nm} 26.91 \text{ Gbit/s/mm}^2$		

[†] Preliminary results.

< 🗇 🕨	- ₹ 🖬 🕨	 → Ξ → 	 Sac

SP-MS Decoders

February 27, 2019 23 / 28

Standard Offset Min-Sum Decoders

2 Sign-Preserving Min-Sum (SP-MS) Decoders

3 Optimization of Sign Preserving Min-Sum Decoders

4 Hardware implementation

5 Conclusions

	< □	► < @ ►	(E) < E)	æ	596
SP-MS Decoders		F	ebruary 27, 2019		25 / 28

Conclusions

We believe that NGDBF and SP-MS can reach 200 $\rm Gbit/s/mm2$ on 28 nm technology with very good FER.

Could be very interesting to assess the algorithm performance for a convolutional LDPC code used in optical fiber.

Tera bit/s decoding throughput with ultra low FER should be feasible in an ASIC with low energy per bit.

Thank you for listening!

Questions?

 SP-MS Decoders
 February 27, 2019
 27 / 28

References I

- F. Cochachin, E. Boutillon, and D. Declercq, "Optimization of sign-preserving noise-aided min-sum decoders with density evolution", in 2018 IEEE 10th International Symposium on Turbo Codes Iterative Information Processing (ISTC), Dec. 2018, pp. 1–5. DOI: 10.1109/ISTC.2018.8625309.
- R. Ghanaatian, A. Balatsoukas-Stimming, T. C. Müller, M. Meidlinger, G. Matz, A. Teman, and A. Burg, "A 588-gb/s ldpc decoder based on finite-alphabet message passing", *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 26, no. 2, pp. 329–340, Feb 2018, ISSN: 1063-8210. DOI: 10.1109/TVLSI.2017.2766925.
- [3] Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, "An efficient 10gbase-t ethernet ldpc decoder design with low error floors", *IEEE Journal of Solid-State Circuits*, vol. 45, no. 4, pp. 843–855, April 2010, ISSN: 0018-9200. DOI: 10.1109/JSSC.2010.2042255.

SP-MS Decoders

February 27, 2019

28 / 28