Massive MIMO:

Research Highlights and Opportunities

Erik G. Larsson

October 7, 2015

Div. of Communication Systems Dept. of Electrical Engineering (ISY) Linköping University Linköping, Sweden

www.commsys.isy.liu.se

Massive MIMO without Cells

From http://arxiv.org/abs/1505.02617

Cell-Free Massive MIMO

• Co-located Massive MIMO is a special case when $\beta_{mk} = \beta_k$

Uplink Pilots

• kth user sends $\tau_p \times 1$ pilot φ_k

$$\boldsymbol{y}_m = \sqrt{\tau_p \rho_{\mathrm{P}}} \sum_{k=1}^{K} g_{mk} \boldsymbol{\varphi}_k + \underbrace{\boldsymbol{w}_m}_{\text{i.i.d. } \mathcal{CN}(0,1)}, \quad \|\boldsymbol{\varphi}_k\|^2 = 1$$

▶ MMSE estimate of *g*_{mk}:

$$\hat{g}_{mk} \propto \sqrt{\tau_p \rho_p} g_{mk} + \underbrace{\sqrt{\tau_p \rho_p}}_{\substack{k' \neq k}} \underbrace{g_{mk'} \boldsymbol{\varphi}_k^H \boldsymbol{\varphi}_{k'}}_{\text{pilot contamination}} + \boldsymbol{\varphi}_k^H \boldsymbol{w}_m$$

Downlink Data Transmission

maximum-ratio processing:

$$x_m = \sqrt{\rho_{\rm d}} \sum_{k=1}^K \sqrt{\eta_{mk}} \hat{g}_{mk}^* q_k$$

Power constraint per AP:

$$\mathbb{E}\left\{|x_{m}|^{2}\right\} = \rho_{d} \sum_{k=1}^{K} \eta_{mk} \gamma_{mk} \le \rho_{d}, \quad \gamma_{mk} \triangleq \mathbb{E}\left\{\left|\hat{g}_{mk}\right|^{2}\right\}$$

▶ Power control coefficients $\{\eta_{mk}\}$ satisfy: $\sum_{k=1}^{K} \eta_{mk} \gamma_{mk} \leq 1$

RX signal at the kth user:

$$r_{k} = \sum_{m=1}^{M} g_{mk} x_{m} + \underbrace{n_{k}}_{\mathcal{CN}(0,1)} = \sqrt{\rho_{d}} \sum_{m=1}^{M} \sum_{k'=1}^{K} \sqrt{\eta_{mk'}} g_{mk} \hat{g}_{mk'}^{*} q_{k'} + n_{k}$$
$$= \left(\sqrt{\rho_{d}} \sum_{m=1}^{M} \sqrt{\eta_{mk}} g_{mk} \hat{g}_{mk}^{*}\right) q_{k} + \cdots$$

Ergodic Capacity Lower Bound (DL)

• User does not know g_{mk} , but relies on hardening:

$$\begin{split} r_{k} &= \sqrt{\rho_{\mathrm{d}}} \mathbb{E}\left\{\sum_{m=1}^{M} \sqrt{\eta_{mk}} g_{mk} \hat{g}_{mk}^{*}\right\} q_{k} + \underbrace{\sqrt{\rho_{\mathrm{d}}} \sum_{m=1}^{M} \sum_{k' \neq k}^{K} \sqrt{\eta_{mk'}} g_{mk} \hat{g}_{mk'}^{*} q_{k'}}_{(1)} \\ &+ \underbrace{\sqrt{\rho_{\mathrm{d}}} \left(\sum_{m=1}^{M} \sqrt{\eta_{mk}} g_{mk} \hat{g}_{mk}^{*} - \mathbb{E} \left\{\sum_{m=1}^{M} \sqrt{\eta_{mk}} g_{mk} \hat{g}_{mk}^{*}\right\}\right) q_{k}}_{(2)} + n_{k} \\ \end{split}$$
Capacity lower bound:
$$R_{k} = \log_{2} \left(1 + \underbrace{\frac{\rho_{\mathrm{d}} \left|\mathbb{E} \left\{\sum_{m=1}^{M} \sqrt{\eta_{mk}} g_{mk} \hat{g}_{mk}^{*}\right\}\right|^{2}}_{\triangleq \mathsf{SINR}_{k}}\right)$$

$$\mathsf{SINR}_{k} = \frac{\rho_{\mathrm{d}} \left(\sum_{m=1}^{M} \sqrt{\eta_{mk}} \gamma_{mk}\right)^{2}}{\rho_{\mathrm{d}} \sum_{k'=1}^{K} \sum_{m=1}^{M} \eta_{mk'} \gamma_{mk'} \beta_{mk}} + \rho_{\mathrm{d}} \sum_{k'\neq k}^{K} \left(\sum_{m=1}^{M} \sqrt{\eta_{mk'}} \gamma_{mk'} \frac{\beta_{mk}}{\beta_{mk'}}\right)^{2} |\boldsymbol{\varphi}_{k'}^{H} \boldsymbol{\varphi}_{k}|^{2} + 1}_{\text{pilot contamination}}$$

Capacity of DL and UL Cell-Free Massive MIMO

$$SINR_{k}^{DL} = \frac{\rho_{d} \left(\sum_{m=1}^{M} \sqrt{\eta_{mk}} \gamma_{mk}\right)^{2}}{\rho_{d} \sum_{k'=1}^{K} \sum_{m=1}^{M} \eta_{mk'} \gamma_{mk'} \beta_{mk} + \rho_{d} \sum_{k'\neq k}^{K} \left(\sum_{m=1}^{M} \sqrt{\eta_{mk'}} \gamma_{mk'} \frac{\beta_{mk}}{\beta_{mk'}}\right)^{2} |\boldsymbol{\varphi}_{k'}^{H} \boldsymbol{\varphi}_{k}|^{2} + 1}$$
$$SINR_{k}^{UL} = \frac{\rho \eta_{k} \left(\sum_{m=1}^{M} \gamma_{mk}\right)^{2}}{\rho \sum_{k'\neq k}^{K} \eta_{k'} \left(\sum_{m=1}^{M} \gamma_{mk} \frac{\beta_{mk'}}{\beta_{mk}}\right)^{2} |\boldsymbol{\varphi}_{k}^{H} \boldsymbol{\varphi}_{k'}|^{2} + \rho \sum_{k'=1}^{K} \eta_{k'} \sum_{m=1}^{M} \gamma_{mk} \beta_{mk'} + \sum_{m=1}^{M} \gamma_{mk}}{\rho \eta_{mk}}$$

Co-located Massive MIMO as special case:

$$\begin{split} \mathrm{SINR}_{k}^{\mathrm{DL}} &= \frac{M\rho_{\mathrm{d}}\gamma_{k}\eta_{k}}{\rho_{\mathrm{d}}\beta_{k}\sum_{k'=1}^{K}\eta_{k'}+1}, \quad \mathrm{SINR}_{k}^{\mathrm{UL}} &= \frac{M\rho\gamma_{k}\eta_{k}}{\rho\sum_{k'=1}^{K}\beta_{k'}\eta_{k'}+1}\\ \eta_{mk} &= \eta_{k}/(M\gamma_{mk}) \text{ for DL} \end{split}$$

Erik G. Larsson Massive MIMO Research Highlights and Opportunities

Pilot Assignment

 \blacktriangleright Random assignment from pre-determined set ${\cal S}$

Greedy assignment:

- Start with random assignment
- User k^* with smallest SINR selects new pilot:

$$\arg\min_{\boldsymbol{\varphi}_{k^{*}}\in S}\sum_{m=1}^{M}\sum_{k^{\prime}\neq k^{*}}^{K}\beta_{mk^{\prime}}\left|\boldsymbol{\varphi}_{k^{*}}^{H}\boldsymbol{\varphi}_{k^{\prime}}\right|^{2}$$

Numerical Results

- ▶ M = 100 APs, K = 40 users uniformly distributed in 1000×1000 m²
- $\tau_c = 200$ symbols coherence
- ► Large-scale fading:

•
$$\beta_{mk} = \mathsf{PL}_{mk} \cdot 10^{\frac{z_{mk}}{10}}$$

• $z_{mk} \sim \mathcal{N}(0, \sigma_{\mathsf{sh}}^2), \sigma_{\mathsf{sh}} = 8 \text{ dB}$

PL_{mk}: three-slope + Hata-COST231 propagation model

$$\mathsf{PL}_{mk} = \left\{ \begin{array}{ll} -L - 35 \log_{10}(d_{mk}) & \text{if } d_{mk} > 50 \text{ m} \\ -L - 15 \log_{10}(d_1) - 20 \log_{10}(d_{mk}) & \text{if } 10 \text{ m} < d_{mk} \le 50 \text{ m} \\ -L - 15 \log_{10}(d_1) - 20 \log_{10}(d_0) & \text{if } d_{mk} \le 10 \text{ m} \end{array} \right.$$

"No power control" so far:

$$\left\{ \begin{array}{ll} \eta_{mk} = \frac{1}{\sum_{k'=1}^{K} \gamma_{mk'}}, & \quad \mbox{for DL} \\ \eta_k = 1, & \quad \mbox{for UL} \end{array} \right. \label{eq:eq:phi_k_k_k_k_k_k_k_k_k_k_k_k_k_k_k_k_k}$$

Random Pilot vs. Greedy Pilot Assignment (DL)

Max-Min Power Control for DL

$$\begin{array}{ll} \max_{\{\eta_{mk}\}} & \min_{k} R_{k} \\ \text{subject to} & \sum_{k=1}^{K} \eta_{mk} \gamma_{mk} \leq 1 \\ & \eta_{mk} \geq 0 \end{array}$$

Quasi-concave problem reformulation:

$$\begin{split} \max_{\{\varsigma_{mk}, \varrho_{k'k}, \vartheta_{m}\}} & \min_{k} \frac{\left(\sum_{m=1}^{M} \gamma_{mk} \varsigma_{mk}\right)^{2}}{\sum\limits_{k' \neq k}^{K} |\boldsymbol{\varphi}_{k'}^{H} \boldsymbol{\varphi}_{k}|^{2} \varrho_{k'k}^{2} + \sum\limits_{m=1}^{M} \beta_{mk} \vartheta_{m}^{2} + \frac{1}{\rho_{d}}} \\ \text{subject to} & \sum_{k'=1}^{K} \gamma_{mk'} \varsigma_{mk'}^{2} \leq \vartheta_{m}^{2} \\ & \sum_{m=1}^{M} \gamma_{mk'} \frac{\beta_{mk}}{\beta_{mk'}} \varsigma_{mk'} \leq \varrho_{k'k}, \ \forall k' \neq k \\ & 0 \leq \vartheta_{m} \leq 1 \\ & \varsigma_{mk} \geq 0 \end{split}$$

▶ Use bisection + SOCP solver

Erik G. Larsson Massive MIMO Research Highlights and Opportunities

Power Control versus No Power Control, DL, Greedy Pilot Assignment

How Much Better is Cell-Free Massive MIMO than Small Cells?

Small-Cell System

$$m_k = \underset{m \in \{\text{available APs}\}}{\arg \max} \beta_{mk} \quad (\text{one round } k = 1, ..., K)$$

No hardening, both APs and users need CSI

Small-Cell System

- Downlink pilots:
 - m_k th AP sends a pilot $\sqrt{\tau_{d,\text{pilots}}} \phi_k$, $\| \phi_k \|^2 = 1$
 - $\blacktriangleright \, k {\rm th}$ user estimates the channel $g_{m_k k} \Rightarrow \hat{g}_{m_k k}$
- Downlink data transmission:

$$y_k = \sqrt{\rho_{\mathrm{d}}} \sum_{k'=1}^{K} g_{m_{k'}k} \sqrt{\eta_{k'}} q_{k'} + w_k$$

$$= \sqrt{\rho_{\mathrm{d}}}\hat{g}_{m_{k}k}\sqrt{\eta_{k}}q_{k} + \underbrace{\sqrt{\rho_{\mathrm{d}}}\tilde{g}_{m_{k}k}\sqrt{\eta_{k}}q_{k}}_{(1) \text{ CSI error}} + \underbrace{\sqrt{\rho_{\mathrm{d}}}\sum_{k'\neq k}^{K}g_{m_{k'}k}\sqrt{\eta_{k'}}q_{k'}}_{(2) \text{ interference}} + w_{k}$$

• Achievable DL rate:
$$R_k = \mathbb{E}\left\{\log_2\left(1 + \frac{\rho_{\mathrm{d}}\eta_k |\hat{g}_{m_k k}|^2}{1 + \mathsf{Var}(1) + \mathsf{Var}(2)}\right)\right\}$$

Net throughput:

$$S_{\text{cell-free},k} = \frac{B}{2} \left(1 - \frac{\tau_p}{\tau_c} \right) R_k, \quad S_{\text{small-cell},k} = \frac{B}{2} \left(1 - \frac{\tau_{u,\text{pilots}} + \tau_{d,\text{pilots}}}{\tau_c} \right) R_k$$

Small-Cell: Max-Min Power Control for DL

Achievable downlink rate:

$$R_{k} = f\left(\frac{\rho_{\mathrm{d}}\eta_{k}\gamma_{m_{k}k}}{\rho_{\mathrm{d}}\eta_{k}(\beta_{m_{k}k} - \gamma_{m_{k}k}) + \rho_{\mathrm{d}}\sum_{\substack{k'\neq k}}^{K}\eta_{k'}\beta_{m_{k'}k} + 1}\right)$$

▶ $f(x) \triangleq -(\log_2 e)e^{1/x} \mathsf{Ei}\left(-\frac{1}{x}\right)$ is a non-decreasing function

Max-min power control problem

$$\max_{\{\eta_k\}} \min_k R_k \\ \text{subject to} \quad 0 \le \eta_k \le 1$$

is quasi-linear:

$$\begin{array}{ll} \max_{\{\eta_k\},t} & t \\ \text{subject to} & t \leq \frac{\rho_{\mathrm{d}}\eta_k\gamma_{m_kk}}{\rho_{\mathrm{d}}\eta_k(\beta_{m_kk}-\gamma_{m_kk})+\rho_{\mathrm{d}}\sum\limits_{k'\neq k}^{K}\eta_{k'}\beta_{m_{k'}k}+1} \\ & 0 \leq \eta_k \leq 1 \end{array}$$

Shadowing Correlation Model

$$z_{mk} = \sqrt{\alpha}a_m + \sqrt{1 - \alpha}b_k$$

- a_m and b_k are independent $\mathcal{N}(0,1)$
- α ($0 \le \alpha \le 1$): cross-correlation at the AP side
- \blacktriangleright 1 α : cross-correlation at the user side
- spatial correlation:

$$\mathbb{E}\left\{a_{m}a_{m'}\right\} = 2^{-\frac{\text{distance}(AP \ m, AP \ m')}{d_{\text{decorr}}}}$$
$$\mathbb{E}\left\{b_{k}b_{k'}\right\} = 2^{-\frac{\text{distance}(\text{user } k, \text{user } k')}{d_{\text{decorr}}}}$$

Downlink, $\tau_p = \tau_{u,\text{pilots}} = \tau_{d,\text{pilots}} = K$, $\tau_c = 200$, K = 40, M = 100

Cell-Free Massive MIMO versus Small Cells

	Co-located	Distributed
architecture	compact arrays	distributed antennas,
		no cells
coverage	high	higher
backhaul	less	more
favorable propagation	yes	yes and better
channel hardening	yes	some
macro diversity	some	more
open problems	many	even more

Open research directions:

- scalability (computation, power control)
- ZF or other processing
- better pilot assignment & power control
- simpler system model with less backhaul connections

Are the Massive MIMO Closed-Form Capacity Results for Real?

From http://arxiv.org/abs/1503.06854

Co-Located UL, 100×30 , MRC, QPSK + rate-1/2, 30 b/s/Hz

- 1 ms \times 200 kHz channel coherence
- one uplink pilot symbol per terminal

$$\frac{\text{Ngo-Larsson-Marzetta'13 formula (vertical line):}}{K \cdot \log_2 \left(1 + \frac{M}{K} \frac{\rho}{(\rho + \frac{1}{K})(1 + \frac{1}{\rho K})} \right) = 30 \text{ b/s/Hz} \implies \rho \approx -13.9 \text{ dB}}$$

With thanks to all my collaborators and students, especially:

- Emil Björnson (LiU, Sweden)
- Hien Q. Ngo (LiU)
- Christopher Mollén (LiU)
- Hei Victor Cheng (LiU)
- Marcus Karlsson (LiU)
- Antonios Pitarokoilis (LiU)
- Thomas L. Marzetta (Bell Labs/Alcatel-Lucent, USA)
- Hong Yang (Bell Labs)
- Alexei Ashikhmin (Bell Labs)
- Ove Edfors (LU, Sweden)
- Fredrik Tufvesson (LU)
- Xiang Gao (LU)
- Xueru Li (Tsinghua Univ., prev. visitor LiU)

