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Research topics
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e Nonlinear Fourier Transform techniques for optical communication
e Noise characterization of lasers and frequency combs, (Menlo systems, UCSB, NBI)
e End-to-end machine learning

e Machine learning for optical fibre sensing (collaboration with Friedrich Alexander
University of Erlangen-Nurnberg)

e Quantum phase estimation (collaboration with DTU Physics)

e Receiver design for quantum communication (collaboration with DTU Physics)

The focus of the group is on the application of machine learning techniques to
optical communication, qguantum communication and optical sensing
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Outline

« Machine learning in physical sciences

« Inverse system learning

« Inverse system learning for Raman amplifier design

« Optical phase tracking framework for frequency combs

« Quantum phase estimation

« Conclusion and outlook
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Machine learning in physical sciences 0TU
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achine learning under the spotlight

The field of machine learning potentially brings a new set of powerful tools to optical communications
and photonics. However, to separate hype from reality it is vital that such tools are evaluated properly and
used judiciously.

Al learns and recreates Nobel-winning |
experiment

Darko Zibar, Henk Wymeersch and llya Lyubomirsky

. ecently, there has been an increasing characterization, performance prediction hype with limited real impact or whether
Devin Coldewey R amount of research that applies and system optimization, to, more recently, it can truly bring significant advantages
" . machine-learning techniques to tasksin  quantum communication. The question that  with orders of magnitude improvement and
my n m E n optical communication. Specific applications  remains to be answered, however, is whether  reduced human involvement compared with
5 have varied from optoelectronic component  the application of such schemes is simply conventional methods
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news & views

MACHINE LEARNING

New tool in the box

A recent burst of activity in applying machine learning to tackle fundamental questions in physics suggests that
associated techniques may soon become as common in physics as numerical simulations or calculus.

Lenka Zdeborova

Google and Tri Alpha Energy Develop an
Algorithm to Advance Nuclear Fusion

Australian physicists, perhaps searching for a way to shorten the work week, have created Resea rch
an Al that can run and even improve a complex physics experiment with little oversight. The
research could eventually allow human scientists to focus on high-level problems and
research design, leaving the nuts and bolts to a robotic lab assistant.

It's like visiting an Al optometrist, but in a nuclear
research laboratory.

by Katie Fehrenbacher
July 26, 2017
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Machine learning in physical sciences

CLEO

Laser Science to Photonic Applications
0]
Technical Conference: 5- 10 May 2019
Exhibition: 7 - 9 May 2019

San Jose Convention Center, San Jose, California, USA

HOME (/HOME/) > PROGRAM & SPEAKERS (/HOME/PROGRAM/) >
SPECIAL SYMPOSIA (/HOME/PROGRAM/SPECIAL-SYMPOSIA/)

Machine Learning Photons: Where Machine
Learning and Photonics Intersect

Artificial Intelligence for Data Centers Operators
and Optical Network Providers - Why and When?

Organizer:
Antonio Napoli, infinera, Germany; Danish Rafique, ADVA Optical Networking, Germany; Yawel Yin, Alibaba Group, China
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Inverse design in nanophotonics

Sean Molesky, ZinLin? Alexander Y.Piggott3, Weiliang Jin', JelenaVuckovi¢® and
Alejandro W. Rodriguez™

Training of photonic neural networks through
in situ backpropagation and gradient measurement

TyLer W. HucHes," MomcHIL Minkov,2 Yu SHi,2 AND SHANHUI FAN?*

'Department of Applied Physics, Stanford University, Stanford, California 94305, USA
“Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA

Tornatore et al. VOL. 10, NO. 10/0CTOBER 2018/J. OPT. COMMUN. NETW. ML1

Introduction to the JOCN Special Issue
on Machine Learning and Data Analytics
for Optical Communications
and Networking

Massimo Tornatore, Martin Birk, Alan Pak Tao Lau, Qiong Zhang, and Darko Zibar
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Machine learning in optical communication DTU

e Optical performance monitoring

e Quantum communication

o Amplifier design

e Laser noise characterization

¢ Impairment compensation

e End-to-end learning

e Network optimization

e Network failure detection
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filtering
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design
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sensing design
Monte Carlo Model Performance
Markov chain identification monitoring (Deep) neural
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Quantum System

communications learning

Laser
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Clustering State-space

models

Mixture
models

D. Zibar et al Nature Photonics, (11) 749-751, 2017
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Supervised learning: deep neural networks

Network depth
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Neural network learns the input-output mapping, f(-) ,using training data

=

output

and perform prediction for new input data: Ynew = f(ZTnew)
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Deep learning for inverse system modelling
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-Problem if the mapping function is not bijective
Learning the inverse mapping using deep neural networks
08/12/2018

9 DTU Fotonik, Technical University of Denmark



Raman amplifier for optical communication DTU
- >4
Name 0O-Band E-Band s-Band bacr.\ d L-Band
Wavelength 1260-1360 1360-1460 1460-1530 1350 1565-1625
range (nm) 1565
C-band system 35 nm
C+L-band system ™ 95 nm i

Fig. 1: Optical wavelength bands in the low-loss window of single-mode fibres. Wideband optical networks (WON) offer more than 10x increased optical
bandwidth compared to C-band systems.

X211,

Raman pumps
(wavelength, powers)

Employing O, E, S and L band requires rethinking optical amplification
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State-of-the-art: Raman amplifier optimization

HE

Repeat N times

-----------------------------------------------
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Raman
solver

Parameter
optimization
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- High complexity due to Raman solver
- Long convergence time
- Restart optimization for new gain profile

- Rely on genetic algorithms

Objective: given a Raman gain profile determine pump powers and wavelengths
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[1] B. Neto, OpEx 2007, [2] X. Liu, OpEx 2004, [3] P. Xia, PTL 2003
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Raman amplifier design using machine learning
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Zibar et al, submitted to OFC 2019 ( arXiv:1811.10381v1)



https://arxiv.org/abs/1811.10381v1

Simulation set-up and results
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Results
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(a) Gain versus frequency (b) Error for different input powers

The learned model works for any gain profile and the re-training is not required
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Phase noise estimation for quantum communication 0Ty
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carrier pilot 2 ' '
qu. 5igna| Ir____________________________“‘____"':
= ‘ﬁ“" f | Balanced R frequency !
' 1550 nm Nested MZM i \ SSMF, 40 kmi RrAnCEC T estimation i

I

! K,; _<:>_ 1| /®/ ' i ADC —+| down-conversion i
ilw: ~170 kHz 40 MBd '\ ! SW3E0 MH 12 bit !
| s(t) exp(jwpt) + exp(jwpt) Lo . K,; ' ‘ | clock recovery |
| fo—gOMHz | < 1 photon per | LO , v oo
| f::F= 10 Mia | symbol in 17k, Received sampled signali
I Alice fsym = 40 MBd : qu. channel : Bﬂb:

Kleis and Schaeffer, Optics Letters 2018

Homodyne receiver: SNR = 4N,
Phase diversity homodyne receiver: SNR = 2N,

Received signal: ¥(t) = aj cos(Awt + A¢p(t))

Pilot tones have low power
Np :Average num. of photons/symbol

(}. . Gaussian modulation

Ultra-sensitive (optimal) detection of optical phase needed at the shot noise limit
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Phase estimation for quantum sensing
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Courtesy of Prof. Achim Peters
https://www.physics.hu-berlin.de/en/qom/research/sensor

Ultra-sensitive (optimal) detection fixed phase shift
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Quantum phase estimation

e System limited by quantum noise only (shot-noise limited system)

e Due to Heisenberg uncertainty, optical phase not a single numerical value

e Number of photons N, instead of SNR: Np = % «— Laser linewidth

e SNR for shot-noise limited system: SINR = % <« Receiver bandwidth

e Phasor diagram of light in coherent state:

Im

Vacum
N fluctuations (noise): %hw
p

>

Re

s this model valid for N, — 1? Can we detect optical phase if SNR<1?
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State-of-the-art: evaluation of the accuracy

e Variance is employed for accuracy estimation (tricky in the experiements)
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Laser phase noise artificially induced as Wiener process (highly problematic)

Receiver bandwidth and linewidth equal: B ~ Av

Same laser used as transmitter and LO

SNR is high as the linewidth is chosen to be relatively small

. . . 2 1
For homodyne detection quantum noise limited variance: 9gn —
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Phase-squeezed beam
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[1] Yonezawa, Science 2011
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Conclusion and outlook

e Optical phase tracking has applications in various fields

e General Bayesian framework for ultra-sensitive phase detection presented
¢ Phase evolution model learned from data

e Tracking of mean phase and also covariance matrix demonstrated

e Quantum limited performance achieved

e Significant improvement to standard frequency noise measurements
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