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Research topics

• Nonlinear Fourier Transform techniques for optical communication

• Noise characterization of lasers and frequency combs, (Menlo systems, UCSB, NBI)   

• End-to-end machine learning 

• Machine learning for optical fibre sensing (collaboration with  Friedrich Alexander 
University of Erlangen-Nurnberg)

• Quantum phase estimation (collaboration with DTU Physics)

• Receiver design for quantum communication (collaboration with DTU Physics)

The focus of the group is on the application of machine learning techniques to 
optical communication, quantum communication and optical sensing
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Outline

• Machine learning in physical sciences

• Inverse system learning

• Inverse system learning for Raman amplifier design

• Optical phase tracking framework for frequency combs

• Quantum phase estimation

• Conclusion and outlook
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Machine learning in physical sciences
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Machine learning in physical sciences
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Machine learning in optical communication

• Optical performance monitoring

• Quantum communication

• Amplifier design

• Laser noise characterization

• Impairment compensation

• End-to-end learning

• Network optimization 

• Network failure detection 
D. Zibar et al Nature Photonics, (11) 749-751, 2017
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Supervised learning: deep neural networks

Neural network learns the input-output mapping,        ,using training data
and perform prediction for new input data:
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Deep learning for inverse system modelling

Unknown 

Learning the inverse mapping using deep neural networks

-Problem if the mapping function is not bijective
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Raman amplifier for optical communication

Employing O, E, S and L band requires rethinking  optical amplification

Raman pumps
(wavelength, powers)

Incoming signal
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State-of-the-art: Raman amplifier optimization

Objective: given a Raman gain profile determine pump powers and wavelengths

Raman 
solver

Parameter 
optimization

Repeat N times

- High complexity due to Raman solver

- Long convergence time

- Restart optimization for new gain profile

- Rely on genetic algorithms 

[1] B. Neto, OpEx 2007, [2] X. Liu, OpEx 2004, [3] P. Xia, PTL 2003
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Raman amplifier design using machine learning

Zibar et al, submitted to OFC 2019 ( arXiv:1811.10381v1)

https://arxiv.org/abs/1811.10381v1
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Simulation set-up and results

 In a multi-span system with hybrid EDFA Raman amplification, we 
consider:

 a single-span

 counter-propagation multi-pumps

 signals propagating in C-band (4 THz, 191-195 THz 
→1538.5-1570.7 nm)

 SMF fiber
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Results

The learned model works for any gain profile and the re-training is not required

(a) Gain versus frequency (b) Error for different input powers
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Phase noise estimation for quantum communication

Kleis and Schaeffer, Optics Letters 2018

Homodyne receiver:

Phase diversity homodyne receiver:

Received signal:

Pilot tones have low power
Average num. of photons/symbol

Gaussian modulation

Ultra-sensitive (optimal) detection of optical phase needed at the shot noise limit
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Phase estimation for quantum sensing

P

Ultra-sensitive (optimal) detection fixed phase shift

Courtesy of Prof. Achim Peters

https://www.physics.hu-berlin.de/en/qom/research/sensor
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Quantum phase estimation

• System limited by quantum noise only (shot-noise limited system)

• Due to Heisenberg uncertainty, optical phase not a single numerical value

• Number of photons Np instead of SNR:

• SNR for shot-noise limited system:

• Phasor diagram of light in coherent state:

Laser linewidth

Receiver bandwidth

Np

Vacum 
fluctuations (noise):

Re

Im

Is this model valid for Np  1? Can we  detect optical phase if SNR<1?
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State-of-the-art: evaluation of the accuracy
• Variance is employed for accuracy estimation (tricky in the experiements)

• Laser phase noise artificially induced as Wiener process (highly problematic)

• Receiver bandwidth and linewidth equal: 

• Same laser used as transmitter and LO 

• SNR is high as the linewidth is chosen to be relatively small

• For homodyne detection quantum noise limited variance:

[1] Yonezawa, Science 2011
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Conclusion and outlook

• Optical phase tracking has applications in various fields

• General Bayesian framework for ultra-sensitive phase detection presented

• Phase evolution model learned from data

• Tracking of mean phase and also covariance matrix demonstrated

• Quantum limited performance achieved

• Significant improvement to standard frequency noise measurements


