Quantum limits of deep space optical communication

Konrad Banaszek, Ludwig Kunz, Marcin Jarzyna, Michał Jachura, Wojciech Zwoliński

Centre for Quantum Optical Technologies, University of Warsaw, Poland

k.banaszek@cent.uw.edu.pl

2018 Munich Workshop on Information Theory of Optical Fiber 6 December 2018

Republic of Poland

European Union European Regional Development Fund

Satellite optical communication

UNIVERSITY OF WARSAW

H. Hemmati, A. Biswas, and I. Djordjevic, Deep-Space Optical Communications: Future Perspectives and Applications, Proc. IEEE **99**, 2020 (2011)

Optical vs radio frequency communication

Benefits:

- Access to higher bandwidths
- Lower diffraction losses
- Reduced regulatory requirements

<u>Challenges:</u>

- Robustness against atmospheric conditions
- Wall-plug efficiency of onboard transceivers
- Pointing and tracking
- Antenna surface quality

Deep-space rf communication links

D. Boroson, On achieving high performance optical communications from very deep space, Proc. SPIE **10524**, 105240B (2018)

Deep-space optical communication

TUNED IN

SOURCE: NASA/JPL-CALTECH

Interplanetary data transmission rates have shot up 10 orders of magnitude in the past 50 years, thanks in part to higher frequency bands of radio waves. Optical transmissions with lasers promise to extend that pace, to the point at which high-definition television broadcasts from Jupiter might be possible.

D. Powell, Lasers boost space communications, Nature 499, 266 (2013)

Signal strength

 $P_{\rm tx}$ transmitter power

 η channel transmission and detection efficiency

Average detected number of photons per slot:

$$n_a = \frac{\eta P_{\rm tx} \tau}{h f_c} = \frac{1}{h f_c} \cdot \frac{\eta P_{\rm tx}}{B}$$

Planck's constant $h=6.626 imes10^{-34}~{
m J\cdot s}$

System characteristics

Channel transmission:

$$\eta_{\rm ch} = \frac{1}{r^2} \cdot \left(\frac{\pi D_{\rm tx} D_{\rm rx}}{4\lambda_c}\right)^2$$

$$\frac{\text{Optical}}{2 \cdot 10^5 \text{ GHz}}$$

Signal central wavelength $\ \lambda_c = c/f_c$

Operating regime	RF	Optical
Carrier frequency f_c	32 GHz	$2 \cdot 10^5 \text{ GHz}$
Transmit antenna diameter ${\cal D}_t$	3 m	0.22 m
Receiver antenna diameter ${\cal D}_r$	34 m	11.8 m
Channel transmission $\eta_{\rm ch}$	$3.29 \cdot 10^{-15}$	$8.32 \cdot 10^{-11}$
Detector efficiency η_{det}	0.1	0.025
Bandwidth B	$0.5~\mathrm{GHz}$	2 GHz
Transmit power P	$35 \mathrm{W}$	4 W
Average output photon number n_a	1.08	0.03
Average noise photon number n_b	66.68	0.03

B. Moision and W. Farr, IPN Prog. Rep. 42-199, 1-10 (2014)

Phase-insensitive Gaussian channel

shot-noise limited detection

channel excess noise

Shannon-Hartley theorem

Quantum Shannon theory

Holevo quantity $\chi {:}$ for any measurement on the output ensemble

$$\mathsf{I} \le \chi = \mathsf{S}\left(\sum_{i} p_i \mathbf{\Lambda}(\hat{\varrho}_i)\right) - \sum_{i} p_i \mathsf{S}\big(\mathbf{\Lambda}(\hat{\varrho}_i)\big)$$

where $S(\hat{\varrho}) = -\text{Tr}(\hat{\varrho} \log_2 \hat{\varrho})$ is the von Neumann entropy.

For a phase-insensitive Gaussian channel under average power constraint:

V. Giovannetti, R. García-Patrón, N. J. Cerf, A. S. Holevo, Nature Photon. 8, 796 (2014)

Pure loss channel

OF WARSAW

Information rate [bits/s]: $R = B \cdot \mathsf{C} = B \cdot n_a \cdot \mathsf{PIE}$

SITY

OF WARSAW

PPM – Pulse Position Modulation

WARSAW

PPM PIE asymptotics

M. Jarzyna, P. Kuszaj, K. Banaszek, Opt. Express 23, 3170 (2015)

Photocount probability:

$$p = 1 - \exp(-Mn_a) \approx Mn_a - \frac{1}{2}(Mn_a)^2$$

Approximate analytical expression:

$$\mathsf{PIE}_{\mathrm{PPM}} \approx \left(W\left(\frac{2\mathrm{e}}{n_a}\right) - 2 + \left[W\left(\frac{2\mathrm{e}}{n_a}\right) \right]^{-1} \right) \log_2 \mathrm{e}$$

Lambert function W(x) $\approx \log x - \log \log x$ for $x \gg 1$

Optimal PPM order

$$M \approx \frac{2}{n_a} \left[W\left(\frac{2\mathrm{e}}{n_a}\right) \right]^{-1}$$

Holevo quantity assumes:

- preparation of codewords
- collective detection of multiple symbols

S. Guha, Phys. Rev. Lett. 106, 240502 (2011)

UNIVERSITY OF WARSAW

Scalable structured receiver

K. Banaszek and M. Jachura, Proc. IEEE ICSOS 2017, pp. 34-37

OF WARSAW

k

Realization

K. Banaszek and M. Jachura, Proc. IEEE ICSOS 2017, pp. 34-37

UNIVERSITY OF WARSAW

Phase-polarization patterns

K. Banaszek and M. Jachura, Proc. IEEE ICSOS 2017, pp. 34-37

PPM encoding achieved by shifting the entire pattern in time

Atmospheric turbulence

Noisy channel asymptotics

Optimized PPM with background noise

W. Zwoliński, M. Jarzyna, and K. Banaszek, Opt. Express 26, 25827 (2018)

- multimode background noise yielding Poissonian count statistics
- Geiger-type direct detection
- unconstrained peak-to-average power ratio (PPM order)

Range dependence

W. Zwoliński, M. Jarzyna, and K. Banaszek, Opt. Express 26, 25827 (2018)

High-order modulation formats

K. Banaszek, M. Jachura, W. Wasilewski, Utilizing time-bandwidth space for efficient deep-space communication, Proc. International Conference on Space Optics 2018, paper P22

Thank you!

