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•  Analytic expression of soliton spectral efficiency 
in terms of fundamental parameters of fiber. 

•  Expressed in terms of correlations functions, 
written as integrals over Jost functions that can 
be averaged over realizations. 

•  Expected to self-average in large system-size 
limit. 

•  Crossover between linear AWGN and non-linear 
regime determined by scalar parameter q. 

•  Methodology can also be applied to defocusing 
NLSE and multimode integrable systems. 

Conclusions 

•  Single Fiber Channel NLSE: 

•  Normalized units: 

•  Bandwidth: (-B, B) 

•  Noise Model: M amplifiers, L apart, with 
white noise:  

Channel Model 
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•  Imminent “Capacity Crunch” necessitates new look at channel nonlinearities in Fiber Optic Communications. 
•  The channel nonlinearities can be adequately described by the non-linear Schroedinger equation (NLSE), which is integrable. 
•  In this work we take advantage of exact results when the input signal distribution is Gaussian to derive an analytic lower bound for the spectral efficiency of solitonic 

transmission in the low noise limit, using scattering data parameters which can be evaluated numerically. 

Abstract 
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Inverse Scattering Transform 
•  Exploit integrability of NLSE: 

•  Given input signal          calculate scattering 
data of associated linear Zakharov-Shabat 
equation 

•  4 degrees of freedom per soliton 

•  Jost functions                      are an important 
byproduct of the calculation 

•  Basic Benefit: In the absence of noise, scattering 
data have no (or trivial) spatial propagation 

)(tu

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Ψ

Ψ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Ψ

Ψ
⎥
⎦

⎤
⎢
⎣

⎡

∂−−

∂

2

1

2

1 λ
t

t

iu
ui

nnnnnn iXb φηξη +=log,,
)(),( 21 tt ΨΨ

( ) ( )[ ] ( )''' tttftfE kk −= δ

Effect of Noise 
•  Noise shifts of the scattering data: 
 
 
 
 
 
 
 
 
 
 

•  In scattering data, first term corresponds to 
Gordon-Haus effect: Random shift in velocity 

•  Second term: “intrinsic” shift 
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•  Input Distribution: From signal to scattering data 

•  Gaussian Noise Model: 

•  For low noise, effectively AWGN channel 
(but with colored noise)   

•  From Sequences to Sets: 
•  Solitons are indistiguishable (Gordon-Haus 

effect mixes any sequence) 
•  Thus, for X iid: 

•  Noise Entropy: Use of Permanent 

•  Low noise limit: Only one permutation 
probable. Thus: 

•  Σ 4x4 block matrix of NxN correlations 

Soliton Information Theory 
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Gaussian Input 
•  Assume Gaussian input distribution 

•  Correlations:  

•  From dimensional analysis: 

•   Why?  
•  Exact distribution: 
 
 
 
 
 
 
•  Conserved during propagation 
•                          localized (positive Lyapunov 

exponent), thus scattering data (nearly) 
independent and (a.s.) solitonic. 

•  Uniform distribution in X and φ 
•  D only remaining scale in ZS system: Hence  

•  Number of solitons  

•  Hence  
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Spectral Efficiency 
•  2BT complex degrees of freedom 
•  N = BT solitons with 4 real degrees of freedom 

•  After calculating input distributions and 
reintroducing units 

•  Symmetric S matrix: 

•  Submatrices are O(1) correlation matrices 

•  When                nonlinearity weak and 
Shannon limit correct 

•  When                nonlinearity is strong (hence 
Gordon-Haus effect dominates) 
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