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Continuous-time Model

In fiber-optic communication pulse propagation is well-modeled by
the stochastic nonlinear Schrödinger (NLS) equation
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z is the distance along the fiber and t is time

q(t, z) is the signal complex envelope

—2 is the chromatic dispersion coe�cient

“ is the nonlinearity parameter

n(t, z) is the white Gaussian noise

s could be 1 or ≠1, representing the defocusing (dark soliton)
and focusing (bright soliton) regimie respectively.

Throughout propagation over an optical fiber, stochastic e�ects
(noise), linear e�ects (dispersion) and nonlinear e�ects (Kerr
nonlinearity) interact.
Even in the absence of noise, solving the NLS equation requires
numerical techniques for partial di�erential equations (PDEs).

Nonlinear Fourier Transform (NFT)

Nonlinear Fourier Transform (NFT) of a signal q(t) is defined via
the spectral analysis of the L operator, given by [1]
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The spectrum of L is found by solving the eigenproblem

L‚ = ⁄‚,

where ⁄ is an eigenvalue of L and ‚ is its associated eigenvector. It
can be shown that the operator L has the isospectral flow property,
i.e., its spectrum is invariant evn as q evolves according to the NLS
equation.
The eigenproblem L‚ = ⁄‚ can be simplified to Zakharov-Shabat
system
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The NFT of q(t) consists of continuous and discrete spectral
functions q̂(⁄) and q̃(⁄) where
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are the zeros of a(⁄) . Here a(⁄) and b(⁄) are given by
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where ‚ is a solution of Zakharov-Shabat system under the
boundary condition
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Only defocusing regime is considered in our work.
Two di�erent numerical methods were used to compute NFT and
INFT, i.e., modified Albowitz-Ladik (modified AL method)and
Layer-Peeling method (LP method).

Obtaining a(⁄) and b(⁄) from Continuous Spectrum

a(⁄) is analytic in C+, and |a(⁄)| vanishes faster than 1/ |z | as
z æ Œ, therefore \a(⁄) and log(|a(⁄)|) is the
HilbertTransform of each other.
In this poster, we consider the defocusing regime
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\a(⁄) = H(log(|a(⁄)|)).

NFT and INFT with Modified AL Method
The forward AL iteration equation is
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for numerical stability, we require the applicability condition
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so that L is not too large or too small. Ideally L should be near one.
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sensitivity issues when Q [k] ¥ 1, 1% change of ‚ [k] will lead
to dramatic changes of ‚ [k ≠ 1] .
(1 ≠ s |Q [k]|2) = 0 will lead to ill-conditioned matrix.
Details are refered to [2].

NFT and INFT with LP Method
As showed in the figure below, at each iteration we combine the
NFT of rectangular pulse with the NFT of signal from t = ≠Œ to
that moment.
In INFT, the backward LP iteration is
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Channel Capacity Estimation

A simulation was designed to estimate the channel capacity of
optical fiber.
The total nonlinear bandwidth was devided into 7 users. Each
user has a raised-cosine pulse with amplitude ranging from 0.5
to 0.99 into 32 levels geometrically. It gives signal at each user
5 bits.
The maximal noise bandwidth occurs when 7 users have the
maximal energy.
A fine quantization was used at the output, giving a smooth
probability solution.
Log-euclidean metric is used on detection.

Channel Capacity Estimation (continued)
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The central user has amplitude of 0.89 and the others are
chose uniformly randomly.
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Variances of the outputs after detection are compared.
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The data rate is 3.43 bit/symbol.
Spectrum e�ciency and SNR is yet to be calculated.

Future Work

Nonlinear Frequency-devision Multipluxing (NFDM) in the
focusing regime.
Capacity of NFDM.
Higher spectrum e�ciency and data rate.
Stability of numerical method.
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