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What we do know about the optical fiber channel … 

At low powers (linear regime): 

 We have an explicit channel model 

 We know how to design systems that operate close to channel capacity 

 Capacity increases with power as in the AWGN channel 

 

 

At high powers (nonlinear regime): 

 Signal propagation is governed by the NLSE (Manakov) equation 

 Conventional systems reach an optimum operating point, after which their 

performance decreases with power 

 It’s been impossible (so far) to increase the information rate beyond a 

certain limit (nonlinear Shannon limit?) 



… and what we don’t know 

 

At high powers (nonlinear regime): 

 We don’t have an explicit channel model 

 We don’t know what is the optimum detector 

 We don’t know what is the optimum input distribution 

 We don’t know what is channel capacity 

The nonlinear Shannon 

limit is just bullshit! 

No, it is not! 

We are limited by the 

nonlinear Shannon limit! 

Everything is Gaussian 

after propagation 



Channel capacity: position of the scientific community 

Pessimists 

Systems are substantially limited by the 

so-called nonlinear Shannon limit 

• A. Splett et al. “Ultimate transmission capacity of amplified 

optical fiber communication systems taking into account fiber 

nonlinearities,” ECOC 1993 

• P. P. Mitra et al. “Nonlinear limits to the information capacity 

of optical fiber communications,” Nature 2001. 

• R.-J. Essiambre et al. “Capacity limits of optical fiber 

networks,” JLT 2010. 

• G. Bosco et al. “Analytical results on channel capacity in 

uncompensated optical links with coherent detection,” Opt. 

Exp. 2011. 

• A. Mecozzi et al., “Nonlinear Shannon limit in pseudolinear 

coherent systems,” JLT 2012. 
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 Optimists 

Higher information rates can be achieved 

Channel capacity might be unbounded 

• R. Dar et al. “New bounds on the capacity of the nonlinear 

fiber-optic channel, Opt. Lett. 2014. 

• M. Secondini et al. “On XPM mitigation in WDM fiber-optic 

systems,”  PTL 2014. 

• K. S. Turitsyn et al. “Information capacity of optical fiber 

channels with zero average dispersion,” PRL 2003. 

• E. Agrell et al. “Influence of behavioral models on 

multiuser channel capacity,” JLT 2015. 

• G. Kramer et al. “Upper bound on the capacity of a 

cascade of nonlinear and noisy channels,” ITW 2015. 
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Discrete-time channels and achievable rates 

channel 

 

source 

 

destination 

 

Modulation Mismatched 
decoding 

Achievable information rate [*] 

– Practical lower bound to average mutual information and capacity 

– Achievable with given modulation and mismatched decoder 

– Easily evaluated through numerical simulations 

– No need to know the true channel law py|x 

[*] D. M. Arnold et al. “Simulation-based computation of information rates for channels with 

memory,” IEEE Trans. Inform. Theory, v. 52, pp. 3498–3508, 2006. 



Relation between AIR and channel capacity 

 Capacity is obtained by maximizing AIR w.r.t. p(x) and q(y|x) 

 

 

 

 

 A common capacity lower bound is the AIR with i.i.d. Gaussian inputs  

px and an assuming a qy|x matched to an AWGN channel with same 

input-output correlation 

 

 

 

 

 In general, the bound may be loose. 



Examples: AWGN channel [*] 

[*] C. E. Shannon, “A Mathematical Theory of Communication”, Bell Sys. Tech J., 1948 
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Examples: nonlinear phase-noise channel [*] 

[*] K. S. Turitsyn et al. “Information capacity of optical fiber channels with zero average dispersion,” PRL 2003. 
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Limited by signal-noise interaction 



Examples: rudimentary FWM channel [*] 

[*] E. Agrell et al. “Influence of behavioral models on multiuser channel capacity,” JLT 2015. 
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Limited by (nonlinear) inter-channel interference 

(all channels with same power and distribution) 
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The fiber-optic waveform channel 

Dispersion Nonlinearity 

Attenuation/amplification 

Noise 

Signal propagation  is governed by the noisy and lossy Manakov equation  

(nonlinear Schrödinger equation (NLSE) for single polarization signals) 

This equation defines an implicit model for a waveform channel 



Solving the equation (40 years later) 

 Some refinements of the methods have been studied 

 The SSFM is still the most used approach 

 The IST is the hottest topic of the moment 

 

 Perturbation methods to account for the presence of noise  

40 years later 

• The NLSE for the optical fiber (Hasegawa & Tappert, 1973) 

• The split-step Fourier method (Hardin & Tappert, 1973) 

• The inverse scattering transform (Zhakarov & Shabat, 1972) 



Explicit  versus implicit  channel models 

channel 

 

 Implicit model: allow to draw samples from p 

 Explicit model: allow to compute p (analytically/easily) 

Approximated models 

– Gaussian noise model 

– Perturbation methods 

– Nonlinear Fourier transform 

– Split-step Fourier method 
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Perturbation methods 

 Applied both to the NLSE and to the Zhakarov-Shabat system 

 Used to model inter-channel NL, intra-channel NL, signal-noise 

interaction, … 

 Regular, logarithmic, combined, … 



Inter-channel nonlinearity: a linear time-varying model… 

… for a nonlinear time-invariant system 

Get rid of it by single-channel backpropagation 

 Propagation in WDM systems (signal-noise interaction and FWM negligible) 

 

channel 

 

 Linear Schrödinger equation with a time- and space-varying stochastic potential 

 P. P. Mitra, J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications”, Nature, 2001. 

 M. Secondini, E. Forestieri, “Analytical fiber-optic channel model in the presence of cross-phase modulation”, PTL, 2012 

 R. Dar et al., “Time varying ISI model for nonlinear interference noise”, OFC, 2014. 

linear time-varying system 



― depends on symbols transmitted by the other users (channels) 

― shows significant correlation both in time  and frequency  

Frequency-resolved logarithmic perturbation model 

XPM causes linear ISI (with time-varying coefficients) and can 

be mitigated by an adaptive linear equalizer (Kalman algorithm) 

 

XPM term 

Time-varying transfer function 



Channel coherence 

Coherence time 

depends on amplification! 

Coherence bandwidth 

depends on amplification! 
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Assumptions about the system 

1000km dispersion-

unmanaged SMF link 

Ideal distributed amplification 

 

5 identical Nyquist-WDM 

channels, B=50GHz 

 
Coherent detection 

(central channel) 

 

M 
U 
X 

TX2 

TX1 

TX5 

TX3 

TX4 
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Computation of AIRs 

Numerically 

(MC simulations and SSFM) 

i.i.d. Gaussian Different (mismatched) 

approximated models 



Capacity bounds 

[*] E. Agrell, “Conditions for a monotonic channel capacity,” TCOM 2015. 

[**] G. Kramer et al. “Upper bound on the capacity of a cascade of nonlinear and noisy channels,” ITW 
2015. 

 Capacity lower bound 

• Capacity is a non-decreasing function of power [*] 

 Capacity upper bound 

• NLSE and Manakov equation preserve energy and entropy [**] 



DSP and detection metric 

DSP does not change mutual information, but can increase AIR by 

reducing mismatch between channel and decoder 

channel 

 

source 

 

destination 

 

Modulation Mismatched 
decoding 

x y DSP 

 

y' 



Different DSP for nonlinearity mitigation 

 Digital backpropagation (DBP) 

• Usually based on the SSFM. 

• DBP removes deterministic  single-channel nonlinearity  

 Least-square equalization (LSE) 

• Inter-channel nonlinearity causes linear time-varying ISI (FRLP model) 

• Linear time-varying channel tracked and equalized by linear least-square equalizer 

 Chromatic dispersion (CD) compensation 

• Dispersion compensation + AWGN detector  (i.e., matched to AWGN channel) 

• Optimum detector if the GN model is exact 



Single-polarization systems 
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Some improvements 

 Single-polarization systems are not efficient 

 

 Least square equalization (LSE) is complicated 

 

 Transmitted symbols (used for LSE) are not available 

 

 Ideal distributed amplification is not practical 

 

 Gains are too small 



2D-LSE for polmux systems 

 Digital backpropagation (DBP) 

• Usually based on the SSFM. 

• DBP removes deterministic  single-channel nonlinearity  

 Least-square equalization (LSE) 

• Inter-channel nonlinearity causes linear time-varying ISI (FRLP model) 

• Linear time-varying channel tracked and equalized by linear least-square equalizer 

 Chromatic dispersion (CD) compensation 

• Dispersion compensation + AWGN detector  (i.e., matched to AWGN channel) 

• Optimum detector if the GN model is exact 

 Two-dimensional least-square equalization (2D-LSE) 

• Similar to LSE, but employing a two-dimensional equalizer 

• More suitable for Manakov equation 



Polarization-multiplexed systems 
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 Similar gains can be achieved in polmux systems 
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INTERFERING CHANNELS INTERFERING CHANNELS 

WDM SYSTEM 

N  

subcarriers 

N  

subcarriers 

N  

subcarriers 

Multicarrier modulation 

OBSERVED CHANNEL 

 Each subcarrier has a narrower bandwidth (divided by N) 

 Each subcarrier has a longer symbol time (multiplied by N) 
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Multi-carrier modulation: detection metric 

q(t,f) approximately constant: 

― over each subband (more accurate for large N) 

― during each symbol time (more accurate for small N) 

AWGN 

phase noise: wrapped AR process 

 

Each subchannel is independently detected 

Detection metric q(y|x) is matched to the following approx. channel model 



Multi-carrier modulation: AIR 



Some improvements 
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 Same gains with multi-carrier modulation and simpler detection 
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Max. AIR gain with distributed/lumped amplification 
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What is next? 

• More accurate channel models  qy|x  

• Optimization of the input distribution  px  

• Don’t forget about complexity issues! 

 

• Perturbation methods 

• Nonlinear Fourier transform 

• Particle filtering or other model-agnostic methods 



Capacity: final remarks 

 Channel modeling is a crucial step for nonlinearity mitigation and 

capacity evaluation 

 Improved detection strategies (based on more accurate models) 

allow to achieve higher information rates w.r.t. the so-called 

nonlinear Shannon limit 

 A Gaussian input provides a loose bound to channel capacity at 

high powers, as it causes a highly detrimental nonlinear 

interference. Much more can be expected by input optimization. 

 

 The capacity problem remains open. 
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email:  marco.secondini@sssup.it                                        

thank you! 


