

TRANSMISSION IN SPACE-DIVISION MULTIPLEXED SYSTEMS

Roland Ryf, Haoshuo Chen, and Nick Fontaine

Bell Laboratories, Alcatel-Lucent, Holmdel (NJ), USA

······ Alcatel·Lucent 🕢

OVERVIEW OF SDM FIBERS

"Uncoupled" multi-core fibers

B.Zhu et al., ECOC 2011 T. Hayashi et.al., ECOC 2011

K.Imamura et al., ECOC 2011 H. Takara et al., ECOC 2012

Sakaguchi et al., OFC 2012

Coupled multi-core and few-mode fibers

COHERENT MIMO BASED SDM TRANSMISSION

- Adaptive T/2-spaced frequency-domain 6x6 MIMO equalizer (1000 taps)
- Data-aided coefficient acquisition using least-mean-square algorithm (LMS)
- Coefficient tracking using constant-modulus algorithm (CMA)

S. Randel et al, ECOC 2013

IMPACT OF MODECOUPLING ON IMPULSE RESPONSE

FEW-MODE FIBERS FOR SDM ADVANTAGES

- Scalable up to >50 modes (15 modes demonstrated)
- Can be spliced with conventional splicer
- Mostly work with regular connectors
- Offers largest number of modes per fiber cross-section
- Standard 125 µm cladding diameter

- Strong modal overlap allows for cost effective pumping for optical amplification
- Most free-space components for single-mode fiber can easily be adapted to few mode fibers

Examples: WSS, AO switch, Splitters, Isolators...

COPYRIGHT © 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

------ Alcatel·Lucent 🥢

LOW DGD GRADED-INDEX FIBERS

 $\begin{array}{l} \textbf{10 modes} \ (\text{6-LP modes}): \ \text{DGD} < 120 \ \text{ps/km}, \ \text{Loss} \ 0.22 \ \text{dB/km}, \ \text{MDL} < 0.02 \ \text{dB/km}, \\ \text{CD} \ 19 \ \text{and} \ 21 \ \text{ps/nm/km}, \ \text{Aeff} \ 117 \ \text{to} \ 270 \ \mu\text{m}^2 \\ \textbf{15 modes} \ (\text{9-LP modes}): \ \text{DGD} \ < 220 \ \text{ps/km}, \ \text{Loss} \ 0.22 \ \text{dB/km}, \ \text{MDL} \ < \ 0.02 \ \text{dB/km}, \\ \text{CD} \ 19 \ \text{and} \ 21 \ \text{ps/nm/km}, \ \text{Aeff} \ 95 \ \text{to} \ 215 \ \mu\text{m}^2 \end{array}$

COPYRIGHT © 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

······ Alcatel·Lucent

IMPULSE RESONSE SPECTROGRAM

- Graded index profile, 50 μm core diameter, NA = 0.2
- Spectrogram was obtained using swept-wavelength interferometry for an off-axis launch and detection
- Modes are clearly separated and appear as red lines
- LP01 mode is fastest mode
- Modal delays increase with group number
- Clear cut-off after the 8 mode groups => 36 spatial modes

SINGLE CORE MIMO-BASED TRANSMISSION

······ Alcatel·Lucent 🥢

Output Pattern of Lanterns

Scrambled Modes!!!

DISSIMILAR FIBER PHOTONIC LANTERNS

Core diameter.

Core doping.

Fibers have mode-groups, each with degenerate groups. Within each mode-group, there is strong mode-mixing. Multiplexing into degenerate groups reduces adiabaticity requirement.

MODE SELECTIVE PHOTONIC LANTERNS (3 MODES)

Element of the transmission matrix after reflection by end cleave of 50 m MMF fiber

TRANSMISSION SETUP TRANSPARENT RAMAN PUMPED SPAN

Blocker where optimized to equalize the spectral dependence of the Raman gain

\$12\$\$ COPYRIGHT © 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

······ Alcatel·Lucent 🥢

IMPULSE RESPONSE OF DGD COMPENSATED SPAN MODE MULTIPLEXERS

IMPULSE RESPONSE OF THE 215km 3-MODE SPAN

• Impulse response is well compensated and can be cascaded 20 or more times

TRANSMISSION RESULTS

- 60 * 6 * 30 Gbaud QPSK / 1.2 = 18 Tbit/s over 2 THz bandwidth
- Spectral efficiency 9 bit/s/Hz
- Spectral efficiency distance product 9450 bit/s/Hz km

GRADED INDEX FIBER SUPPORTING 6 SPATIAL MODES DGD COMPENSATED FIBER

- Graded index profile designed to minimize DGD across all modes
- The effective area of the FMF was 90 μm^2 for LP_{01} and LP_{11}, 120 μm^2 for LP_{21}, and 180 μm^2 for the LP_{02} mode.
- The loss is around 0.2 dB/km for the ${\rm LP}_{\rm 01}$ mode
- The chromatic dispersion was 18 ps/(nm km)
- DGD of the compensated span:

IMPULSE RESPONSE OF THE 6-MODE FMF After 59, 178, 295, 590, and 1180 km

- Impulse response is obtained based on a channel estimation
- All the 144 impulse responses are qualitatively similar
- We show impulse responses obtained by averaging the intensities of all 144 individual impulse responses
- The total width stay is bounded by the max DGD excursion of 8.2 ns up to 700km

COPYRIGHT © 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

17

Q-FACTOR FOR 12 x 12 MIMO TRANSMISSION 59 km FMF SPAN AND 20-Gbaud QPSK SIGNALS

- All 32 WDM channels above FEC limit after 708 km transmission
- Spectral efficiency of 32 b/s/Hz for 16QAM format

10-MODE MODE-SELECTIVE PHOTONIC LANTERN

25 μm

Core diameter = 27 μ m

Spliced to 10-mode GI fiber

LP mode	LP ₀₁	2 × LP ₁₁	2 × LP ₂₁	LP ₀₂	2 × LP ₃₁	2 × LP ₁₂
Fibre core diameter [µm]	23	20	15	9	13	6.5
Mode dependent losses [dB]	0.25	0.3	0.7	0.75	1.25	2.2

Lantern output

10-mode fiber output

3D WAVEGUIDE PHOTONIC LANTERNS TO COUPLE INTO 15-MODE MULTIMODE FIBER

48 µm core

Coupled core approximates a multi-mode core. Requires 2x demagnification for coupling to the 9-LP mode MMF.

Fontaine	et.al. C	DFC 201	5 PD T	h5C.1

Fabricated by UC Davis

• Alcatel · Lucent 🥢

OUPUT PROFILES OF 15-MODE 3D WAVEGUIDE

5-7 dB Insertion loss, 6-7 dB MDL

RECEIVER SETUP – LOSS BUDGED

10 MODE TRANSMISSION RESULTS

Transmission distances up to 125 km can be achieved with 24 WDM channels (23.2 Tb/s) and 87 km for a full C-band signal with 120 WDM channels (**115.2 Tb/s**) R.Ryf et al., ECOC 2015, PDP

CONCLUSION

- We have demonstrated that high spectral-efficiency (up to 43 bit/s/Hz) high-performance transmission (up to 117 Tbit) is possible in numerous fibers supporting multiple spatial channels for distances up to 4200 km
- Key requirements for the fibers are:
 - Low mode dependent loss
 - Low differential group delay
- If modes are well separated, it is possible to use a subset of the modes

SUMMARY: MIMO BASED TRANSMISSION RESULTS

Fiber	Nr Spatial	Spectral Eff	Distance	Spectral Eff . Distance	Reference
Туре	channels	bit/s/Hz	km	bit/s/Hz.km	
CC	6	18	1750	30690	R. Ryf ECOC 2014
CC	3	4	4200	16800	R. Ryf OFC 2012
FMF	6	16	708	11328	R. Ryf ECOC 2013
FMF	3	7.6	1000	7600	E. lp OFC 2013
FMF	6	32	176	5632	R. Ryf OFC 2013
FMF	10	28.2	125	3600	R. Ryf ECOC 2015
MMF	3	9	305	2745	R. Ryf ECOC 2014
FMF	3	3	900	2700	R. Ryf OFC 2014
FMF	15	43.6	22.8	994	N. Fontaine OFC 2015
FMF-MC	3	20.6	40	824	T. Mizuno OFC 2014
FMF	6	10	74	740	Y. Chen, ECOC 2014
MMF	6	7	17	119	R. Ryf OFC 2014

*Spectral efficiency per coupled group

COUPLED CORE 3-CORE MULTI-CORE FIBER (MCF) CHARACTERISTICS OF A 60 km 3-CORE FIBER

- In coupled-core multi-core fibers, cores are allowed to couple, and can therefore be placed closer than in uncoupled multi-core fiber
- MIMO DSP is required to undo the coupling
- Couple-core fiber show strong coupling which is beneficial to reduce the DGD build-up in long distance transmission
 3-CORE MCF

CHARACTERISTICS OF A 60 km 3-CORE FIBER

- Core diameter is 12.4 μm
- Refractive index step $\Delta = 0.27\%$
- Distance between cores 29.4 μm
- Effective core area 129±2 μm^2
- Attenuation 0.181 dB/km
- Dispersion 20.6 ps/nm/km
- Dispersion slope 0.06 ps/nm²/km
- Super-mode DGD 224 ps/km

R. Ryf et.al. PDP ECOC 2011

- FWHM Pulse width after 60 km is 230 ps R.Ryf et al., OFC 2012, PDP5C.2
- Pulse width growths proportional to square root of distance

····· Alcatel·Lucent