Nonlinear Gaussian Noise Model for Multi-Mode Fibers with Space-Division Multiplexing

Georg Rademacher and Klaus Petermann georg.rademacher@tu-berlin.de

(3)

INTRODUCTION

We present an extension of the well accepted *Nonlinear Gaussian Noise Model* [1,2] for multi-mode fibers with Space-Division Multiplexing. We compare the analytical model with numerical simulations and find a good agreement, making the model an easy-to-use tool for the design of future fiber optical transmission systems.

ANALYTICAL MODELING

STIT STIT

FWM IN MULTI-MODE FIBERS

The impact of nonlinear signal distortions can be modeled through an additional noise and included in an nonlinear OSNR for fiber mode p as:

$$OSNR_{NL}^{(p)} = \frac{P_{in}}{B_{ref}(N_{ase} + G_{NL}^{(p)})}$$
(1)

The nonlinear noise power density can be calculated as [3]:

$$G_{NL_MS}^{(p)} = G_{NL}^{(p)} \cdot N_{sp}$$

VALIDATION METHOD

We define a ratio of the nonlinear noise when only considering intramodal distortion and when considering both, intra- and intermodal nonlinear distortion. In the simulation, we assess the nonlinear noise through the variance of the received constellation points.

$$\rho^{(p)} = \frac{G_{NL_intra}^{(p)}}{G_{NL_intra}^{(p)} + G_{NL_inter}^{(p)}} = \frac{G_{NL_intra}^{(p)}}{G_{NL_tot}^{(p)}}$$

(4)

System Design

Modulation Format	QPSK
Pulse shaping	Root raised cosine filtering
Roll Off	$\alpha_{RO} = 0.00\tilde{1}$
Symbol Rate	28 GB aud
Number of WDM channels	9
Channel spacing	28.01 GHz
Total optical Bandwidth	$B_{opt} \approx 250 GHz$
P_{in} /WDM/MDM channel	-6dBm
Span length	80km
Number of Spans	1 - 25
Fiber Core Radius	$a = 9\mu m$
Numerical Aperture	0.205
Attenuation	lpha = 0.2 dB/km
Nonlinear parameter	$n_2 = 2.6^{-20} m^2 / W$
Differential Mode Delay $LP_{01} - LP_{11a/b}$	0-50 ps/km
Differential Mode Delay $LP_{01} - LP_{12a/b/02}$	0-100 ps/km
Chromatic Dispersion (all modes)	$15 ps/nm \cdot km$
—	

VALIDATION: TRANSMISSION DISTANCE

VALIDATION: DIFFERENTIAL MODE DELAY

REFERENCES

- A. Splett et al. "Ultimate Transmission Capacity of Amplified Optical Fiber Communication Systems taking into account Fiber Nonlinearities," In ECOC, page MoC2.4, 1993.
 A. Carena et al. "Modeling of the Impact of Nonlinear Propagation Effects in Uncompen-
- A. Carena et al. "Modeling of the Impact of Nonlinear Propagation Effects in Uncompensated Optical Coherent Transmission Links," JLT, **30** 1524–1539, 2012.
 G. Rademacher et al. "Nonlinear Gaussian Noise Model for Multi-Mode Fibers with Space-
- 3. G. Rademacher et al. "Nonlinear Gaussian Noise Model for Multi-Mode Fibers with Space-Division Multiplexing," Submitted for publication

ACKNOWLEDGMENT

This work was funded by the German Research Foundation (DFG)

