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Abstract

The Nonlinear Fourier Transform (NFT) uses the integrability
of the Nonlinear Schroedinger Equation (NLSE) to represent
signals in a nonlinear frequency domain, where the evolution
equations are simple. The NFT degrees of freedom can be
used for data communication. Different schemes of
modulating the NFT in terms of eigenvalues and
corresponding discrete spectral functions are investigated,
focusing on spectral efficiency (SE).

Introduction

The pulse propagation on an optical fiber can be described by the
Nonlinear Schroedinger Equation (NLSE) taking into account
chromatic dispersion and Kerr-nonlinearity.
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Governed by the NLSE, the evolution of signals on the fiber can
become complicated in time- and frequency domain. However, a
transformation into what is referred to as the nonlinear frequency
domain by applying a Nonlinear Fourier Transform (NFT) can be
done, where the evolution equations become simple.
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The NFT of a signal consists of:
A discrete spectrum formed by the eigenvalues λi of the
system for the respective impulse which corresponds to the
solitonic part of the nonlinear spectrum, given by a(λi) = 0
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the discrete spectral function of each eigenvalue,
Ũ(λi) =

b(λi )
aλ(λi )

the continuous spectrum which is the non-solitonic,
dispersive part of the nonlinear spectrum (the ordinary Fourier
Transform is the limit for small signal amplitudes where the
solitonic part is absent)

For communications, bits are mapped onto these independent
degrees of freedom at the transmitter and sent over the channel by
applying the Inverse NFT (INFT).

The simplified channel model, where the fiber is simulated by the
Split-Step-Fourier-Method (SSFM) is shown above. INFT and
NFT are numerically calculated by the Darboux Transform and the
Layer Peeling Method, respectively.

First Order Soliton - Eigenvalue Modulation

First order solitons only have one eigenvalue and no continuous
spectrum. Two possible eigenvalue constellations are shown below.

A 1 out of M - constellation
of the eigenvalues on the imag-
inary axis is similar to conven-
tional AM. However, amplitude
and duration of first order solitons
are correlated. Necessary eigen-
value spacing is given by noise
power. The time-bandwidth-
product (TBP) increases linearly
with the number of constellation
points M, while ld(M) bits per
symbol can be transmitted.

Constellation points can also be distinguished by their real part. The
corresponding pulse shape will always be the same, but the different
symbols are travelling with different velocities. This corresponds to a
frequency shift. Consequently, the constellation bandwidth increases
with adding more constellation points.

First Order Soliton - Spectral Function Modulation

Another possibility is modulating the discrete spectral function of
the soliton eigenvalue. The figure below is the simulation result of a
circular 32-QAM. The number of different phases and the amplitude
spacing is limited by noise.
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Scaling the amplitude of the dis-
crete spectral function shifts the
time center of the impulse. Mul-
tiple amplitude levels therefore re-
quire increased time slots, reduc-
ing the improvement of a higher
order constellation.

Higher Order Soliton Modulation

Transmitting multiple eigenvalues in parallel generates higher
order solitons. One can generally consider a k out of M -
constellation on the imaginary axis. Different combinations can be
sent to transmit information. Each eigenvalue can have different
discrete spectral amplitudes. It is also possible to fix k eigenvalues
and only modulate their discrete spectral functions. Mapping bits to
eigenvalues directly has no significant advantage, as 1 out of M is a
subset of this scheme why the same limitations hold.

The eigenvalues and the corresponding discrete spectral functions
determine the duration and bandwidth of the soliton, as well as the
temporal and spatial periodicity of the impulse. However these
relations are not obvious, especially not for higher soliton orders, as
analytical solutions are generally not available. Therefore,
comprehensive simulation is necessary to find spectrally efficient
eigenvalue combinations. The example shows a third order soliton.

A brute force approach simulates all possibilities for a second order
soliton with a 15-point imaginary constellation η = [0.01, 0.02] and
a 16-PSK for the discrete spectral function. As some solitons have
bad TBP properties, the overall SE is poor. Sorting out all solitons
with time- and bandwidth above a certain cutoff threshold can
improve the performance. Below, the SE as a function of the
temporal and spectral cutoff parameters is shown. This approach
is a way to screen suitable higher order eigenvalue combinations.
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Research Questions for Further Investigation

How are temporal and spectral width of higher order solitons
related to their eigenvalues?
Can the SE be improved by increasing the soliton order?
Can the shown modulation schemes be combined and
optimized?
How do temporal and spectral neighboring solitons interfere?
What about modulating the continuous spectrum?
What improved numerical methods should be used?
More precise noise model?
Discrete vs. distributed amplification?
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