

Implementation of Eigenvalue Multiplex Transmission with a lossy 75 km Fiber Link

A. Geisler, C. G. Schäffer Department of High Frequency Engineering, Helmut-Schmidt-Universität / University of the Federal Armed Forces Holstenhofweg 85, 22043 Hamburg

geisler@hsu-hh.de

UNIVERSITÄT

Universität der Bundeswehr Hamburg

Abstract

To overcome the fiber nonlinearity limit imposed for classical linear transmission schemes in fiber optical communication and based on the broad availability of coherent optical transmission equipment the communication with eigenvalues attracted research interest recently [1]-[6]. This novel type of communication is based on the application of the (Inverse) Nonlinear Fourier Transform. A prerequisite of the theory is a lossless fiber channel. Using a real world lossy link a basic transmission scheme using the eigenvalue's related discrete spectrum phase information was implemented. The transmission of 3 GBit/s over a 75 km fiber link without amplification was realized.

NFT / Inverse NFT

Fourier Transform / Inverse Fourier Transform

 \Rightarrow Transformation between time and frequency (ω) domain

Figure 1: Rectangular input signal (in "'soliton units"') and *linear Fourier spectrum [1]*

Nonlinear Fourier Transform

- \Rightarrow Transformation from time domain to continuous (λ) and discrete frequency (λ_i) domain
- \Rightarrow Discrete frequency domain consists of eigenvalues $(\lambda_i, \Im(\lambda_i) \ge 0)$ and discrete spectral amplitudes $(\tilde{q}(\lambda_i))$

- \Rightarrow Pulses with fast phase changes are more sensitive to phase errors of $\tilde{q}(\lambda_i)$
- \Rightarrow Usage of 2 λ_{i} and different phases of $\tilde{q}(\lambda_{i})$ to increase data rate

Figure 8: Discrete spectral amplitude: normalized to λ_i with reference

Figure 9: Measured signal spectrum and 90% bandwidth

 \Rightarrow Evaluation of 2¹⁰ bit de-Bruijn sequence with Fast Nonlinear Fourier Transform using Ablowitz-Ladik approximation [2] and 80 samples per symbol, 4.6 GHz band-

Figure 2: Continuous ($\hat{q}(\lambda)$) and discrete ($\tilde{q}(\lambda_i)$) NFT spectrum of input signal in Fig. 1(a), [1]

(b)

Inverse Nonlinear Fourier Transform

(a)

- \Rightarrow Transformation from continuous and/or discrete frequency domain to time domain
- \Rightarrow Significant computational effort for inverse transform considering continuous and discrete spectral components
- \Rightarrow Darboux Transform induces time domain signal from eigenvalues and their related discrete spectral amplitudes

 \Rightarrow Gray mapping not feasible for 2 λ_i and 3 phases

Figure 6: Coherent setup using self homodyne detection

- \Rightarrow Self homodyne detection using narrow linewidth laser avoids extensive phase noise and frequency deviations
- \Rightarrow Digital to analog and analog digital conversion is performed at 80 GSa/s resulting in 1GBd/s signal
- \Rightarrow Phase correction is "data driven", based on knowledge of transmitted signal

width containing 90% of the signal power

- \Rightarrow Transmission over 75.46 km at 3 GBit/s with 3.6 · 10⁻³ BER
- \Rightarrow Improved mapping (exchange of "011" and "100") would result in 2.9 · 10⁻³ BER
- \Rightarrow Link attenuation is \sim 17.1 dB (\sim 2 dB due to connectors and bending) requiring increased launch power compared to lossless theory
- \Rightarrow Best transmission at 0.67 dBm mean lauch power (offset of 6.8 dB to theoretical value without losses, 5.7 dB reported in [5])

Summary and Outlook

- \Rightarrow Successful transmission over 75.46 km TW RS fiber with 3 GBit/s
- \Rightarrow Investigation of influence of distributed raman amplification
- \Rightarrow Test of applicability of phase estimation schemes
- \Rightarrow Transmission over larger fiber distance with periodical amplification

[1] M.I. Yousefi; F.R. Kschischang, "Information Transmission Using the Nonlinear Fourier Transform, Part I-III", IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 4312-4369, 07/2014

Figure 3: Darboux Transform from λ_i and normalized $\tilde{q}(\lambda_i)$ to time domain signal in "'soliton units"

Normalization

2i

 \Rightarrow Normalization constants between "'real world" and "'soliton units"

 $q = \frac{A}{\sqrt{P_0}}, \quad z = \frac{l}{L}, \quad \tau = \frac{t}{T_0}, \quad N^2 = \frac{L_D}{L_{NL}} = \frac{\gamma P_0 T_0^2}{|\beta_2|}$

- **Figure 7:** VPI simulation vs. measurement: normalized intensities
- \Rightarrow Simulation with -6.13 dBm mean launch power and no loss (OSNR: 45.2 dB)
- \Rightarrow Measurement with 0.67 dBm (OSNR:36.2 dB)

[2] S. Wahls; V. Poor, "Fast Numerical Fourier Transforms", arXiv:1402.1605v2, 10/2014

[3] S.T. Le; J.E. Prilepsky et al., "Modified Nonlinear Inverse Synthesis for Optical Links with Distributed Raman Amplification", ECOC 2015, 09/2015

[4] Z. Dong; S. Hari et al., "Nonlinear Frequency Division Multiplexed Transmissions based on NFT", IEEE Photon. Technol. Lett., vol. 27, no.15, pp.1621-1623, 08/2015

[5] V. Aref; H. Bülow et al., "Experimental Demonstration of Nonlinear Frequency Division Multiplexed Transmission", ECOC 2015, 09/2015

[6] H. Bülow; V. Aref et al., "Practical Implementation of Nonlinear Fourier Transform Based Optical Nonlinearity Mitigation", ECOC 2015, 09/2015