Implementation of Eigenvalue Multiplex
Transmission with a lossy 75 km Fiber Link
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—[Abstract)

To overcome the fiber nonlinearity limit imposed for clas-
sical linear transmission schemes in fiber optical commu-
nication and based on the broad availability of coherent
optical transmission equipment the communication with
eigenvalues attracted research interest recently [1]-[6].
This novel type of communication is based on the applica-
tion of the (Inverse) Nonlinear Fourier Transform. A pre-
requisite of the theory is a lossless fiber channel. Using
a real world lossy link a basic transmission scheme using
the eigenvalue’s related discrete spectrum phase informa-
tion was implemented. The transmission of 3 GBit/s over
a 75 km fiber link without amplification was realized.
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—[Lossless Fiber Channel}
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Figure 4: Spatial evolution along fiber [1]

=- Linear channel for signals in Nonlinear Fourier Domain

r—[NFT / Inverse NFT]

Fourier Transform / Inverse Fourier Trans-
form

= Transformation between time and frequency (w) domain
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Figure 1: Rectangular input signal (in *'soliton units™) and
linear Fourier spectrum [1]
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Nonlinear Fourier Transform

= Transformation from time domain to continuous (\) and
discrete frequency (A;) domain

= Discrete frequency domain consists of eigenvalues
(A, J(\;) = 0) and discrete spectral amplitudes (G(\))

= NFT spectrum converges to linear FT spectrum for
small amplitudes (2)\ = w)
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Figure 2: Continuous (4()\)) and discrete (G();)) NFT spec-
trum of input signal in Fig. 1(a), [1]

Inverse Nonlinear Fourier Transform

= Transformation from continuous and/or discrete fre-
guency domain to time domain

= Significant computational effort for inverse transform
considering continuous and discrete spectral compo-
nents

= Darboux Transform induces time domain signal
from eigenvalues and their related discrete spectral

amplitudes
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Figure 3: Darboux Transform from A\; and normalized g( ;)
to time domain signal in

i

soliton units

Normalization

= Normalization constants between ™real world” and
”'soliton units”™
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r—[ModuIation Format}

= |¢();)| is more sensitive to perturbations

= Modulation of |G();)| results in time delays between
pulse components

= Pulses with fast phase changes are more sensitive to
phase errors of g(\;)

= Usage of 2 ); and different phases of G(};) to in-
crease data rate

000 001 010 011
21 ‘ 21 ‘ 21 ‘ 21 ‘
—21 —21 | —21 —21
-2 0 2 -2 0 2 =2 0 2 =2 0 2
100 101 110 111
21 ‘ 21 ‘ 21 ‘ 21
O @ 7 O 7 @ | O : @ O @
—21 —21 | —21 | —21 |
-2 0 2 -2 0 2 =2 0 2 =2 0 2

Figure 5: Mapping of arg g(\;): |g(\;)| normalized to J(\;)

= Gray mapping not feasible for 2 \; and 3 phases

{Experimental Setup}

Eigenvalue multiplex transmission
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Figure 6: Coherent setup using self homodyne detection

= Self homodyne detection using narrow linewidth laser
avoids extensive phase noise and frequency deviations

= Digital to analog and analog digital conversion is per-
formed at 80 GSa/s resulting in 1GBd/s signal

= Phase correction is "data driven™, based on knowledge
of transmitted signal
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F[Experimental Results}
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Figure 8: Discrete spectral amplitude: normalized to )
with reference
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Figure 9: Measured signal spectrum and 90% bandwidth

— Evaluation of 219 bit de-Bruijn sequence with Fast Non-
linear Fourier Transform using Ablowitz-Ladik approxi-
mation [2] and 80 samples per symbol, 4.6 GHz band-
width containing 90% of the signal power

= Transmission over 75.46km at 3GBit/s with

3.6-10° BER

= Improved mapping (exchange of "011” and ”100”) would
result in 2.9-1073 BER

= Link attenuation is ~17.1dB (~ 2dB due to connectors
and bending) requiring increased launch power com-
pared to lossless theory

=- Best transmission at 0.67 dBm mean lauch power (off-
set of 6.8dB to theoretical value without losses, 5.7dB
reported in [35])

{Pulse shape: Simulation / Experimentj
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Figure 7: VPI| simulation vs. measurement: normalized
Intensities

= Simulation with -6.13dBm mean launch power and no
loss (OSNR: 45.2dB)

= Measurement with 0.67 dBm (OSNR:36.2 dB)

—[Summary and Outlook}

= Successful transmission over 75.46 km TW RS fiber
with 3 GBit/s

= Investigation of influence of distributed raman am-
plification

= Test of applicability of phase estimation schemes

= Transmission over larger fiber distance with period-
ical amplification
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