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    An upper bound on the spectral efficiency of a standard optical fiber 
model

 

–  this is the first upper bound on a “full” model

–  the bound is tight at low SNR;

–  the bound may be extremely loose at high SNR; 
but it’s better than nothing

1) Main Message

2

η ≤ log 1+SNR( )   [bits/sec/Hz]
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n  Capacity C of a channel PY|X(.) is the maximum I(X;Y) under 
constraints put on X

n  Example: real-alphabet additive white Gaussian noise (AWGN) channel 
 
 
with Var[Z]=N and an input power constraint E[X2] ≤ P has

n  Complex alphabet AWGN channels: C = log(1+P/N)

n  N is usually taken as N0W where N0 is the (one-sided) noise PSD and 
W is the bandwidth

n  Spectral efficiency is η=C if one uses sinc-pulses of bandwidth W

2) Information Theory Basics
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Y = X + Z
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n  Maximum Entropy: consider RX=E[X X†] where X has length L. Then 
 
 
 
 
with equality if and only if X is Gaussian and circularly symmetric

n  For a complex square matrix M we have 
 
 
 
In particular, if M is unitary then h( M X ) = h( X )

h X( ) ≤ log πe( )L det RX
"
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h M X( ) = h X( )+ 2log det M( )

Maximum Entropy
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n  Entropy Power: 

n  Entropy Power Inequality: for independent X and Y we have

n  Conditional version: for conditionally independent X and Y we have 

Entropy Power Inequality

V X( ) = eh(X ) L πe( )

V X +Y( ) ≥V X( )+V Y( )

V X U( ) = eh X U( ) L πe( )
V X +Y U( ) ≥V X U( )+V Y U( )
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Fiber
Loss/Gain

Nonlinear

• To simulate, split the fiber length z* into K small steps (Δz) and the 
time T into L small steps (Δt)

• Split-step Fourier method at distance zk, k=0,1,...,K

Noise

DN

E(zk )

Linear

F
 DL
 F-1


•  Ideal Raman amplification: removes the loss but adds noise

• F = Fourier transform 

• DL = diagonal matrix with fixed entries of unit amplitude (all-pass filter)

• DN = diagonal matrix with unit amplitude entries; the (ℓ,ℓ)-entry phase 
shift is proportional to the magnitude-squared of the ℓth entry of EN(zk+1 )

th entry of EN(zk+1 )

E(zk+1 )
EN(zk+1 )

time signal: 
vector of length L

3) Fiber Channel(s)
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Main Observations

• The linear step conserves energy and entropy

• The non-linear step also conserves energy and entropy

Nonlinear Noise

DN

E(zk )

Linear

F
 DL
 F-1
 E(zk+1 )
EN(zk+1 )

4) An Upper Bound

h a e
jarg(a)+ jf ( a )!
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& = h a ,arg(a)+ f ( a )( )+E log a'( )*

= h a( )+ h arg(a)+ f ( a ) a( )
h a ,arg(a)( )

! "##### $#####
+E log a'( )*= h(a)
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• Energy after K steps: EnergyLaunch + KN . We thus have:

Nonlinear Noise

DN

E(zk )

Linear

F
 DL
 F-1
 E(zk+1 )
EN(zk+1 )

Energy Recursion

h E zK( )( ) ≤ log πe( )L det R E zK( )( )( )"
#

$
% … maximum entropy

≤ log πe Ri,i E zK( )( )"# $%
i=1

L

∑ … Hadamard's inequality

≤ L ⋅ log πe EnergyLaunch +KN( ) L"# $% … Jensen's inequality
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• Entropy recursion:

• We thus have:

Nonlinear Noise

DN

E(zk )

Linear

F
 DL
 F-1
 E(zk+1 )
EN(zk+1 )

Entropy Recursion

V E zk+1( ) E z0( )( ) ≥V E zk( ) E z0( )( )+N L

V E zK( ) E z0( )( ) ≥ KN L

or h E zK( ) E z0( )( ) ≥ Llog πe KN L( )
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*SNR = receiver signal-to-noise ratio

So for every step we have:

• Signal energy grows by the noise variance: can upper bound h( E(zK) )

• Entropy power grows by at least the noise variance: 
can lower bound h( E(zK) | E(z0) )

• Result*:

Nonlinear Noise

DN

E(zk )

Linear

F
 DL
 F-1
 E(zk+1 )
EN(zk+1 )

I E( z0 );E( zK )( ) = h E( zK )( )− h E( zK ) E( z0 )( )
≤ L ⋅ log 1+SNR( )
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⇒
1

L
I E( z0 );E( zK

)( ) ≤ log 1+SNR( )

•  Let B = 1/Δt be the “bandwidth” of the simulation

• So L = T/Δt = TB is the time-bandwidth product

• The spectral efficiency is thus bounded by

η ≤ log 1+SNR( )   [bits/sec/Hz]
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Q1: Why normalize by the simulation bandwidth B? 
The “real” bandwidth W can be smaller.

A1: B can be chosen (this is even desirable) as the smallest bandwidth 
for which simulations give accurate results

Q2: What about capacity?

A2: Any real fiber has a maximal bandwidth Bmax. 
A capacity upper bound follows by multiplying Bmax by log(1+SNR)

η ≤ log 1+SNR( )   [bits/sec/Hz]

Discussion
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Q3: What about MIMO fiber? 
A3: If energy is preserved by the linear and non-linear steps, and the 
noise is AWGN then the above bound remains valid per mode

Q4: What about frequency-dependent (or mode-dependent) loss?

A4: Open research!

Q5: What about lower bounds?

A5: Apply entropy recursion to V( E(zk) ) and energy recursion to h( E(zk) | 
E(z0) ). Issues (looks solvable): bandwidth expansion bounds

η ≤ log 1+SNR( )   [bits/sec/Hz]

Discussion
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Conclusions

1)  Nonlinear cascade models are fun to study ... many other applications

2)  Spectral efficiency of SMF with linear polarization is ≤ log(1+SNR)

3)  Many extensions are possible:

–  lumped amplification, 3rd-order dispersion, delayed Kerr effect

–  uniform loss, linear filters (for capacity results)

–  MIMO fiber (MMF or MCF) if the linear and non-linear steps 
conserve energy and entropy, and the noise is Gaussian and white

4)  More difficult:

–  better bounds and understanding at high SNR

–  frequency-dependent loss, dispersion, non-linearity 

5)  Network information theory for fiber should be developed
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