

A Study of Capacity and Spectral Efficiency of Fiber Channels

Gerhard Kramer (TUM) based on joint work with Mansoor Yousefi (TUM) and Frank Kschischang (Univ. Toronto)

MIO Workshop Munich, Germany December 8, 2015



1) Main Message

An upper bound on the spectral efficiency of a standard optical fiber model

$$\eta \leq \log(1 + SNR)$$
 [bits/sec/Hz]

- this is the first upper bound on a "full" model
- the bound is tight at low SNR;
- the bound may be extremely loose at high SNR; but it's better than nothing

2) Information Theory Basics

- Capacity C of a channel P_{Y|X}(.) is the maximum I(X;Y) under constraints put on X
- Example: real-alphabet additive white Gaussian noise (AWGN) channel

$$Y = X + Z$$

with Var[Z]=N and an input power constraint $E[X^2] \le P$ has

$$I(X;Y) \le C = \frac{1}{2}\log\left(1+\frac{P}{N}\right)$$

- Complex alphabet AWGN channels: C = log(1+P/N)
- N is usually taken as N₀W where N₀ is the (one-sided) noise PSD and W is the bandwidth
- Spectral efficiency is $\eta = C$ if one uses sinc-pulses of bandwidth W

Maximum Entropy

• Maximum Entropy: consider $\mathbf{R}_X = \mathbf{E}[\underline{X} \ \underline{X}^{\dagger}]$ where \underline{X} has length L. Then

$$h(\underline{X}) \leq \log[(\pi e)^{L} \det \mathbf{R}_{\underline{X}}]$$

with equality if and only if \underline{X} is Gaussian and circularly symmetric

• For a complex square matrix **M** we have

$$h(\mathbf{M} \underline{X}) = h(\underline{X}) + 2\log|\det(\mathbf{M})|$$

In particular, if **M** is unitary then $h(\mathbf{M} \underline{X}) = h(\underline{X})$

Entropy Power Inequality

• Entropy Power:

$$V(\underline{X}) = e^{h(\underline{X})/L} / (\pi e)$$

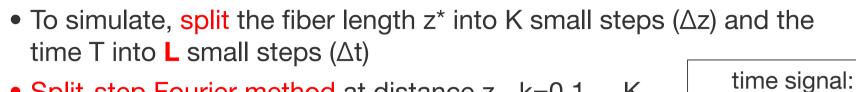
• Entropy Power Inequality: for independent <u>X</u> and <u>Y</u> we have

$$V(\underline{X} + \underline{Y}) \ge V(\underline{X}) + V(\underline{Y})$$

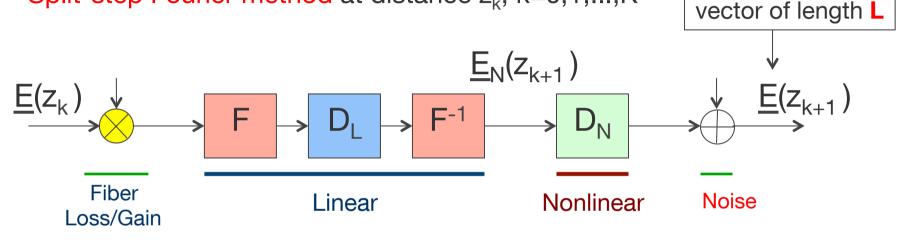
• Conditional version: for conditionally independent \underline{X} and \underline{Y} we have

$$V\left(\underline{X}|\underline{U}\right) = e^{h(\underline{X}|\underline{U})/L} / (\pi e)$$
$$V\left(\underline{X} + \underline{Y}|\underline{U}\right) \ge V\left(\underline{X}|\underline{U}\right) + V\left(\underline{Y}|\underline{U}\right)$$

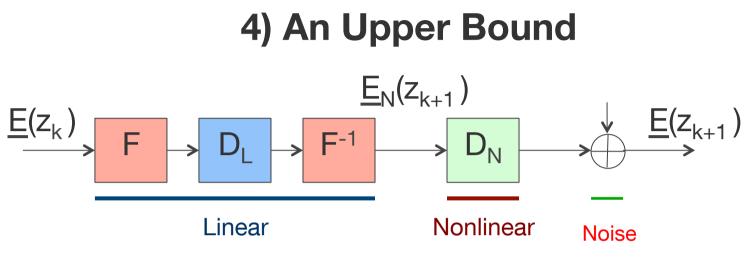
пп



• Split-step Fourier method at distance z_k, k=0,1,...,K



- Ideal Raman amplification: removes the loss but adds noise
- F = Fourier transform
- D_L = diagonal matrix with fixed entries of unit amplitude (all-pass filter)
- $D_N =$ diagonal matrix with unit amplitude entries; the (ℓ, ℓ) -entry phase shift is proportional to the magnitude-squared of the ℓ^{th} entry of $\underline{E}_N(z_{k+1})$

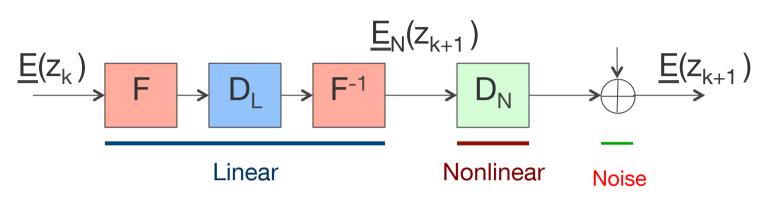


Main Observations

- The linear step conserves energy and entropy
- The non-linear step also conserves energy and entropy

$$h\left(|a|e^{j\arg(a)+jf(|a|)}\right) = h\left(|a|,\arg(a)+f(|a|)\right) + \mathbb{E}\left[\log|a|\right]$$
$$= \underbrace{h\left(|a|\right)+h\left(\arg(a)+f(|a|)\mid|a|\right)}_{h\left(|a|,\arg(a)\right)} + \mathbb{E}\left[\log|a|\right] = h(a)$$

Energy Recursion



• Energy after K steps: Energy_{Launch} + KN . We thus have:

$$\begin{split} & h\big(\underline{E}(z_{\kappa})\big) \leq \log\Big[\big(\pi e\big)^{L} \det\big(\mathbf{R}\big(\underline{E}(z_{\kappa})\big)\big)\Big] \ \dots \ \text{maximum entropy} \\ & \leq \sum_{i=1}^{L} \log\Big[\pi e \ R_{i,i}\big(\underline{E}(z_{\kappa})\big)\Big] \ \dots \ \text{Hadamard's inequality} \\ & \leq L \cdot \log\Big[\pi e\big(\textit{Energy}_{\text{Launch}} + \textit{KN}\big)/L\Big] \ \dots \ \text{Jensen's inequality} \end{split}$$

Entropy Recursion



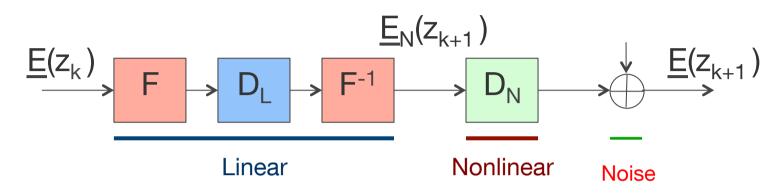
• Entropy recursion:

$$V(\underline{E}(z_{k+1})|\underline{E}(z_0)) \ge V(\underline{E}(z_k)|\underline{E}(z_0)) + N/L$$

• We thus have:

$$V(\underline{E}(z_{\kappa})|\underline{E}(z_{0})) \ge KN/L$$

or $h(\underline{E}(z_{\kappa})|\underline{E}(z_{0})) \ge L\log(\pi e KN/L)$



So for every step we have:

- Signal energy grows by the noise variance: can upper bound h($\underline{E}(z_K)$)
- Entropy power grows by at least the noise variance: can lower bound h($\underline{E}(z_k) | \underline{E}(z_0)$)
- Result*:

$$\begin{split} &I(\underline{E}(z_0);\underline{E}(z_{\kappa})) = h(\underline{E}(z_{\kappa})) - h(\underline{E}(z_{\kappa})|\underline{E}(z_0)) \\ &\leq L \cdot \log(1 + SNR) \end{split}$$

$$\Rightarrow \frac{1}{L} I(\underline{E}(z_0); \underline{E}(z_{\kappa})) \leq \log(1 + SNR)$$

- Let $B = 1/\Delta t$ be the "bandwidth" of the simulation
- So $L = T/\Delta t = TB$ is the time-bandwidth product
- The spectral efficiency is thus bounded by

 $\eta \leq \log(1 + SNR)$ [bits/sec/Hz]

Discussion

$\eta \leq \log(1 + SNR)$ [bits/sec/Hz]

Q1: Why normalize by the <u>simulation</u> bandwidth B? The "real" bandwidth W can be smaller.

A1: B can be chosen (this is even desirable) as the smallest bandwidth for which simulations give accurate results

Q2: What about capacity?

A2: Any real fiber has a maximal bandwidth B_{max} . A capacity upper bound follows by multiplying B_{max} by log(1+SNR)

Discussion

$$\eta \leq \log(1 + SNR)$$
 [bits/sec/Hz]

Q3: What about MIMO fiber?

A3: If energy is preserved by the linear and non-linear steps, and the noise is AWGN then the above bound remains valid per mode

Q4: What about frequency-dependent (or mode-dependent) loss? A4: Open research!

Q5: What about lower bounds?

A5: Apply entropy recursion to V($E(z_k)$) and energy recursion to h($E(z_k)$ | $E(z_0)$). Issues (looks solvable): bandwidth expansion bounds

Conclusions

- 1) Nonlinear cascade models are fun to study ... many other applications
- 2) Spectral efficiency of SMF with linear polarization is $\leq \log(1+SNR)$
- 3) Many extensions are possible:
 - lumped amplification, 3rd-order dispersion, delayed Kerr effect
 - uniform loss, linear filters (for capacity results)
 - MIMO fiber (MMF or MCF) if the linear and non-linear steps conserve energy and entropy, and the noise is Gaussian and white
- 4) More difficult:
 - better bounds and understanding at high SNR
 - frequency-dependent loss, dispersion, non-linearity
- 5) Network information theory for fiber should be developed

