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1) Main Message

An upper bound on the spectral efficiency of a standard optical fiber
model

n =<log(1+SNR) [bits/sec/Hz]

— this is the first upper bound on a “full” model
— the bound is tight at low SNR;

- the bound may be extremely loose at high SNR;
but it’s better than nothing
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2) Information Theory Basics

= Capacity C of a channel Py(.) is the maximum I(X;Y) under
constraints put on X

s Example: real-alphabet additive white Gaussian noise (AWGN) channel

Y=X+Z

with Var[Z]=N and an input power constraint E[X?] < P has
1 P
[(X;Y)=C=—log|1+—
(X:Y)=C - Jlog[ 141

s Complex alphabet AWGN channels: C = log(1+P/N)

= N is usually taken as N,W where N, is the (one-sided) noise PSD and
W is the bandwidth

s Spectral efficiency is n =C if one uses sinc-pulses of bandwidth W
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Maximum Entropy

Maximum Entropy: consider Ry=E[X XT] where X has length L. Then

h(X) < Iog[(ne)L det RK]

with equality if and only if X is Gaussian and circularly symmetric
For a complex square matrix M we have

h(M X) = h(X)+2log|det(M)|

In particular, if M is unitary then h( M X) = h( X)
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Entropy Power Inequality

= Entropy Power:

V(X) =" (ze)

= Entropy Power Inequality: for independent X and Y we have

V(X+Y)=V(X)+V(Y)

= Conditional version: for conditionally independent X and Y we have
V(X|U) = " /(e)
V(X+Y|U)=V(X|u)+V (YY)
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e To simulate, split the fiber length z* into K small steps (Az) and the

time T into L small steps (At)

e Split-step Fourier method at distance z,, k=0,1,...,K vec;[’ci;nreo?ilgerr]gt:h .
E(z, ) En(Ziiq) . é’( )
“ Zy 41
= . E.
F > DL IS =t DN >@ 5
Fiber . . —
Loss/Gain Linear Nonlinear Noise

¢ |[deal Raman amplification: removes the loss but adds noise
e F = Fourier transform
e D, = diagonal matrix with fixed entries of unit amplitude (all-pass filter)

e D, = diagonal matrix with unit amplitude entries; the (¢,£)-entry phase
shift is proportional to the magnitude-squared of the £'" entry of E\(z,,+)

2N
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4) An Upper Bound

En(Zi1)

E(z.) v E@Zeq)
_L> F S DL 5 F-1 S DN >® = >k+1
Linear Nonlinear Noise

Main Observations
e The linear step conserves energy and entropy
e The non-linear step also conserves energy and entropy

jarg(a)+ jf(al)) _ h

h|lale a

,arg(a)+f(ja))) + E[log|a|]

- h(ja]) + h(arg(a) + () | [a)) + E [logla]] = h(a)
h(

a ,evlrg(a))




Technische Universitat MUnchen "-m

Energy Recursion

Ez) En(Zyiq) | E ( \

Z Z

— X F | D [ F! > Dy >® =
Linear Nonlinear Noise

* Energy after K steps: Energy, ,,ncn + KN . We thus have:
h(E(zy)) = Iog[(ne)L det(R(E(zK)))] ... maximum entropy

< Y log|we R, (E(z))| ... Hadamard's inequality

<L -log|we(Energy ..., + KN)/L] ... Jensen's inequality

“LNT
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Entropy Recursion

= En(Zii1) | E
_—>(Zk) F > DL s F1 > DN >@ _(Z>k+1 )
Linear Nonlinear No_ise
e Entropy recursion:
V(E(Zm) E(Zo)) = V(E(Zk)‘g(zo))"' N/L

e \We thus have:

V(E(z z,))= KN/L
or h(E( )\E(zo)) = Llog(we KN/L)
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£, ) En(Zii1) | Ez..)

Z Z

_—>k F > DL s F- = DN >® — >k+1
Linear Nonlinear Noise

So for every step we have:

* Signal energy grows by the noise variance: can upper bound h( E(zy) )

e Entropy power grows by at least the noise variance:
can lower bound h( E(z) | E(zo) )

e Result™
I(E(Zo);E(ZK)) = h(E(ZK)) - h(E(ZK)|E(Zo))
<L -log(1+ SNR)
i:‘; *SNR = receiver signal-to-noise ratio
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= %/(E(ZO);E(ZK)) <log(1+ SNR)

e | et B = 1/At be the “bandwidth” of the simulation
e So L =T/At = TB is the time-bandwidth product
¢ The spectral efficiency is thus bounded by

n <log(1+ SNR) [bits/sec/Hz]

¢ LNT
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Discussion

n <log(1+ SNR) [bits/sec/Hz]

Q1: Why normalize by the simulation bandwidth B?
The “real” bandwidth W can be smaller.

A1: B can be chosen (this is even desirable) as the smallest bandwidth
for which simulations give accurate results

Q2: What about capacity?

A2: Any real fiber has a maximal bandwidth B, ..
A capacity upper bound follows by multiplying B, ., by log(1+SNR)

7%

)



Technische Universitat Munchen TIII.I.I

Discussion

n <log(1+ SNR) [bits/sec/Hz]

Q3: What about MIMO fiber?
A3: If energy is preserved by the linear and non-linear steps, and the
noise is AWGN then the above bound remains valid per mode

Q4: What about frequency-dependent (or mode-dependent) loss?
A4: Open research!

Q5: What about lower bounds?

A5: Apply entropy recursion to V( E(z,) ) and energy recursion to h( E(z,) |
E(z,) )- Issues (looks solvable): bandwidth expansion bounds

0
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Conclusions

Nonlinear cascade models are fun to study ... many other applications
Spectral efficiency of SMF with linear polarization is < log(1+SNR)
Many extensions are possible:

- lumped amplification, 3"9-order dispersion, delayed Kerr effect

— uniform loss, linear filters (for capacity results)

- MIMO fiber (MMF or MCF) if the linear and non-linear steps
conserve energy and entropy, and the noise is Gaussian and white

More difficult:

- better bounds and understanding at high SNR

- frequency-dependent loss, dispersion, non-linearity
Network information theory for fiber should be developed
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