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Abstract I

Abstract: An achievable rate is derived for the fiber-optical
channel, described by the nonlinear Schrodinger equation
and discretized Iin time and space. The model takes into
account the effect of nonlinearity and dispersion. The ob-
tained achievable rate goes to infinity with a pre-log factor
of one half as the power grows large. Since any achievable
rate is a lower bound on the capacity of the same channel,
the result proves that the capacity of the discretized fiber-
optical channel grows unboundedly.

Introduction and Motivation

A large gap exists between the known lower and upper
bounds on the capacity of optical fiber channel.

The only available upper bound [2], [3] is log(1+p), where
p IS the signal to noise ratio.

All previous lower bounds either saturate or fall to zero
in the high power regime.

e [he proposed lower bound grows with a pre-log factor of

one half. ‘
Channel Model
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e Continuous channel:

Nonlinear Schrodinger

Fiquation:

a(z =0,1) — - —a(z = Z,t)
e Split step Fourier method (SSFM) channel (the same model has been used in [2])
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Main Theorem:

The capacity of the SSFM channel in bit per channel
use under the constraint E|||ay||*| < Ey, when the num-
ber of segments K goes to infinity, is lower-bounded
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Here p = FEy/E, IS the receiver signal-to-noise ratio.
This result extends to lumped amplification and dual po-

larizations.
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Proof: For an iid complex Gaussian input vector a,,

hay) > I 1og(7f (B, + EO))

The proof of this inequality employs entropy power in-
equality.
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The proof of this inequality relies on the following two
lemmas. For complete proofs, see [1].
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Lemma 1: Let (x,y) be a pair of L-dimensional com-
plex random vectors, distributed according to an arbi-
trary joint probability density function.
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The proof employs the maximum entropy result in the
polar coordinate system. )
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Lemma 2: For the SSFM channel with iid complex
Gaussian input the following holds

o r(a)|ay) = rla,_;|a):

o x(a}|a) —K(akl|a0)+6’)(1/K2)

o x(a,|a) =r(a}|ay) + Lo, + 2E]|a}]|?] o2
o Elllayll’] = Efllay|l’] + L(k — 1)or,,
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