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Abstract

Abstract: An achievable rate is derived for the fiber-optical
channel, described by the nonlinear Schrödinger equation
and discretized in time and space. The model takes into
account the effect of nonlinearity and dispersion. The ob-
tained achievable rate goes to infinity with a pre-log factor
of one half as the power grows large. Since any achievable
rate is a lower bound on the capacity of the same channel,
the result proves that the capacity of the discretized fiber-
optical channel grows unboundedly.

Introduction and Motivation

• A large gap exists between the known lower and upper
bounds on the capacity of optical fiber channel.

• The only available upper bound [2], [3] is log(1+ρ), where
ρ is the signal to noise ratio.

• All previous lower bounds either saturate or fall to zero
in the high power regime.

• The proposed lower bound grows with a pre-log factor of
one half.

Channel Model

• Continuous channel:

Nonlinear Schrödinger Equation:
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• Split step Fourier method (SSFM) channel (the same model has been used in [2]):
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Results

Main Theorem:
The capacity of the SSFM channel in bit per channel
use under the constraint E
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]
≤ E0, when the num-

ber of segments K goes to infinity, is lower-bounded
by
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Here ρ = E0/En is the receiver signal-to-noise ratio.
This result extends to lumped amplification and dual po-
larizations.

Proof: For an iid complex Gaussian input vector a0,
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The proof of this inequality employs entropy power in-
equality.
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The proof of this inequality relies on the following two
lemmas. For complete proofs, see [1].

Lemma 1: Let (x,y) be a pair of L-dimensional com-
plex random vectors, distributed according to an arbi-
trary joint probability density function.
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The proof employs the maximum entropy result in the
polar coordinate system.

Lemma 2: For the SSFM channel with iid complex
Gaussian input the following holds
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