Recent lower bounds on the capacity of fiber-optical links

Erik Agrell¹, Tobias A. Eriksson², Naga V. Irukulapati¹, and Kamran Keykhosravi¹

¹Department of Signals and Systems ²Department of Microtechnology and Nanoscience Chalmers University of Technology, Sweden

> Munich Workshop on Information Theory of Optical Fiber, Munich, Germany, Dec. 7, 2015

CHAI MERS

Vetenskapsrådet

Contents

- Lower bounds from experiments
- 2. Lower bounds from stochastic backpropagation
- **5.** Lower bounds for the finite-memory GN model
- 4. Lower bounds for the split-step Fourier model

in collaboration with

Alex Alvarado Peter A. Andrekson Giuseppe Durisi Tobias Fehenberger Norbert Hanik Pontus Johannisson Magnus Karlsson Marco Secondini Henk Wymeersch

whose contributions are gratefully acknowledged

1. Lower bounds from experiments

$$I(\boldsymbol{X}; \boldsymbol{Y}) = \mathbb{E}\left[\log \frac{p(\boldsymbol{Y}|\boldsymbol{X})}{p(\boldsymbol{Y})}\right]$$

Achievable information rate (AIR), calculated by Monte Carlo estimation from experimental data

Tobias A. Eriksson *et al.*

Mismatched Decoding [1]

- Lower-bounding the MI by assuming an auxiliary channel $q({\bm Y}|{\bm X})$
- Acheivable by a receiver designed for $q(\boldsymbol{Y}|\boldsymbol{X})$
- This study: comparison of different assumptions for $q({m Y}|{m X})$
- Symbol-by-symbol receivers only

Channel distribution models

2D independent, identically distributed Gaussian (2D-iidG)

- 2D Gaussian $q(oldsymbol{Y}|oldsymbol{X})$
- Diagonal covariance
- Fixed means = X

CHALMERS

• The baseline $q(\mathbf{Y}|\mathbf{X})$, typically assumed in today's receivers

4D independent, identically distributed Gaussian (4D-iidG)

- 4D Gaussian $q(m{Y}|m{X})$
- Diagonal covariance
- Optimized mean for each X

• = mean

4D correlated Gaussian (4D-CG)

- 4D Gaussian $q(oldsymbol{Y}|oldsymbol{X})$
- Optimized covariance for each X
- Optimized mean for each X

Results without dispersion compensation

Results with dispersion compensation

2. Lower bounds from stochastic backpropagation

Baseline:

CHALMERS

Digital backpropagation (DBP)

$$I(\boldsymbol{X};\boldsymbol{Y}) \ge I(\boldsymbol{X};\boldsymbol{Z})$$

Naga V. Irukulapati *et al.*

Our approach: Stochastic DBP (SDBP)

Can SDBP increase the AIR over DBP?

SDBP [4, 5]:

- Returns a *distribution* of X, not a single estimate
- Builds on factor graphs and the sumproduct algorithm
- Marginalizes out unobserved variables to get $r({m X}|{m Y})$
- Is used to model channel memory
 - [4] Irukulapati et al., TCOM 2014
 - [5] Irukulapati *et al., JLT 2015*

AIR computation

Mismatched decoding using an auxiliary channel q:

$$I(\boldsymbol{X};\boldsymbol{Y}) = \mathbb{E}\left[\log\frac{p(\boldsymbol{Y}|\boldsymbol{X})}{p(\boldsymbol{Y})}\right] \ge \mathbb{E}\left[\log\frac{q(\boldsymbol{Y}|\boldsymbol{X})}{q(\boldsymbol{Y})}\right]$$

- Achievable using a receiver based on q [1]
- Computing q for a given r is hard

Mismatched decoding using a *reverse auxiliary channel* r:

$$I(\boldsymbol{X};\boldsymbol{Y}) = \mathbb{E}\left[\log\frac{p(\boldsymbol{X}|\boldsymbol{Y})}{p(\boldsymbol{X})}\right] \ge \mathbb{E}\left[\log\frac{r(\boldsymbol{X}|\boldsymbol{Y})}{p(\boldsymbol{X})}\right]$$

- Knowledge of q is not necessary for achievability
- Achievable using a receiver based on r [6, 7]
- In this work, r is obtained from SDBP

- [1] Arnold *et al., TIT,* 2006
- [6] Ganti et al., TIT, 2000
- [7] Sadeghi *et al., TIT,* 2009

Results

3. Lower bounds for the finite-memory GN model

The (regular) GN model [9], [10]:

- Large dispersion, weak nonlinearity
- WDM (under some conditions also valid for single channel)
- iid input

CHALMERS

⇒ the nonlinearity behaves as additive Gaussian noise

The finite-memory GN (FMGN) model:

- Similar to the GN model for iid input, more accurate for non-iid
- More complex—output depends on a sequence of inputs

$$\sigma_k^2 = \sigma_0^2 + \eta \mathbb{E}[|X_k|^2]^3$$

(assumed independent of k)

[9] Splett *et al., ECOC* 1993[10] Poggiolini *et al., JLT* 2014

$$\sigma_k^2 = \sigma_0^2 + \eta \left(\frac{1}{2N+1} \sum_{i=k-N}^{k+N} |X_k|^2 \right)^3$$

(depends on k)

Model validation

Channel capacity results

A(z,t) is sampled in time and space:

$$\mathbf{A}_{k} = [A_{k,0}, \dots, A_{k,L-1}]$$
$$A_{k,l} = A(k\Delta z, l\Delta t)$$

- Often used for simulations
- Used as a channel model in [12]

[12] Kramer et al., ITW 2015

Previous capacity results

• Ignoring nonlinearity, the capacity is $C = \log(1 + SNR)$

• Ignoring dispersion, the capacity grows as $C \sim (1/2) \log SNR$ [13, 14]

SNR

 Considering nonlinearity and distortion, all known lower bounds either saturate or fall to zero at high power [15, 16, 11]

whereas the only known upper bound grows unboundedly [12, 17]

[13] Turitsyn <i>et al., PRL</i> 2003	[11] Agrell <i>et al., JLT</i> 2014	[16] Mecozzi and Essiambre, <i>JLT</i> 2012
[14] Yousefi and Kschischang, <i>TIT</i> 2011	[15] Bosco <i>et al., OE</i> 2012	[17] Yousefi <i>et al., CWIT</i> 2015

CHALMERS UNIVERSITY OF TECHNOLOGY

A lower bound for the split-step Fourier channel

The capacity of the split-step Fourier channel with $K \, {\rm segments}$ and $L \, {\rm time}$ slots is defined as

Theorem: If $\mathbb{E}[\|\boldsymbol{A}_0\|^2] \leq E_0$, E_n is the noise energy, and $SNR = E_0/E_n$, then $\lim_{K \to \infty} C_{K,L} \geq \frac{1}{2} \log \left(\frac{e}{2\pi} \left(1 + \frac{SNR^2}{1 + 2SNR} \right) \right) \sim \frac{1}{2} \log SNR$

[12] Kramer *et al., ITW* 2015[17] Yousefi *et al., CWIT* 2015

CHALMERS UNIVERSITY OF TECHNOLOGY

Sketch of the proof

Let the input $\,\boldsymbol{A}_{0}$ be iid complex circularly symmetric Gaussian and lower-bound

$$I(\boldsymbol{A}_K; \boldsymbol{A}_0) = h(\boldsymbol{A}_K) - h(\boldsymbol{A}_K | \boldsymbol{A}_0)$$

1.
$$h(\mathbf{A}_K) \ge L \log\left(\frac{\pi e}{L} \left(E_0 + E_n\right)\right)$$

Proved via the entropy power inequality

2.
$$\lim_{K \to \infty} h(\boldsymbol{A}_K | \boldsymbol{A}_0) \le \frac{L}{2} \log \left(\frac{2\pi^3 e}{L^2} \left(2E_0 E_n + E_n^2 \right) \right)$$

Proved via the maximum entropy result in polar coordinates

For details, see [18, 19].

Also, extensions to dual polarization and lumped amplification

[18] Keykhosravi *et al., MIO* 2015, poster[19] Keykhosravi *et al., ArXiv,* Dec. 2015

Poster Omorrow!

Conclusions

- Assuming a 4D Gaussian auxiliary channel can increase the AIR over the conventional 2D assumption
- Accounting for channel memory using SDBP can increase the AIR over DBP
- The capacity of the finite-memory GN is much higher than that of the conventional GN model at high power
- 4. The capacity of the split-step Fourier channel grows unboundedly with power

CHALMERS UNIVERSITY OF TECHNOLOGY

Complete references

- [1] D. Arnold, H.-A. Loeliger, P. O. Vontobel, A. Kavčić, and W. Zeng, "Simulation-based computation of information rates for channels with memory." IEEE Trans. Inf. Theory. vol. 52. no. 8, pp. 3498-3508, 2006.
- [2] T. A. Eriksson, T. Fehenberger, N. Hanik, P. A. Andrekson, M. Karlsson, and E. Agrell, "Fourdimensional estimates of mutual information in coherent optical communication experiments." in Proc. Eur. Conf. Opt. Commun. (ECOC), 2015, paper We.4.6.5.
- [3] T. A. Eriksson, T. Fehenberger, N. Hanik, P. A. Andrekson, M. Karlsson, and E. Agrell, "Impact of 4D channel distribution on the achievable rates in coherent optical communication experiments." http://arxiv.org. Dec. 2015.
- [4] N. V. Irukulapati, H. Wymeersch, P. Johannisson, E. Agrell, "Stochastic digital backpropagation," IEEE Trans. Commun., vol. 62, no. 11, pp. 3956-3968. 2014.
- [5] N. V. Irukulapati, D. Marsella, P. Johannisson, E. [12] G. Kramer, M. I. Yousefi, and F. R. Agrell, M. Secondini, H. Wymeersch, "Stochastic digital backpropagation with residual memory compensation," J. Lightw. Technol., vol. 33, no. 24, pp. 1–7, 2015.
- [6] A. Ganti, A. Lapidoth, and I. E. Telatar, "Mismatched decoding revisited: General alphabets, channels with memory, and the wideband limit," IEEE Trans. Inf. Theory, vol. 46, no.

7, pp. 2315-2328, 2000.

- [7] P. Sadeghi, P. O. Vontobel, and R. Shams,
- "Optimization of information rate upper and lower bounds for channels with memory," IEEE Trans. Inf. Theory, vol. 55, no. 2, pp. 663–688, 2009. [8] N. V. Irukulapati et al., in preparation.

[9] A. Splett, C. Kurtzke, and K. Petermann,

- "Ultimate transmission capacity of amplified optical fiber communication systems taking into account fiber nonlinearities," in Proc. Eur. Conf. Opt. Commun. (ECOC), Montreux, Switzerland, Sept. 1993.
- [10] P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, "The GN-model of fiber non-linear propagation and its applications," J. Lightw. Technol., vol. 32, no. 4, pp. 694–721, Feb. 2014.
- [11] Erik Agrell, Alex Alvarado, Giuseppe Durisi, and Magnus Karlsson, "Capacity of a nonlinear optical channel with finite memory," J. Lightw. Technol., vol. 32, no. 16, pp. 2862–2876, Aug. 2014.
- Kschischang, "Upper bound on the capacity of a cascade of nonlinear and noisy channels," in Proc. IEEE Inf. Theory Workshop (ITW), Jerusalem, Israel, Apr.-May, 2015.
- [13] K. S. Turitsyn, S. A. Derevyanko, I. V. Yurkevich, and S. K. Turitsyn, "Information capacity of optical fiber channels with zero average dispersion," Phys. Rev. Lett., vol. 91, no.

20, pp. 203 901-1-203 901-4 Nov. 2003.

- [14] M. I. Yousefi and F. R. Kschischang, "On the per-sample capacity of nondispersive optical fibers," IEEE Trans. Inf. Theory, vol. 57, no. 11, pp. 7522-7541, Nov. 2011.
- [15] G. Bosco, P. Poggiolini, A. Carena, V. Curri, and F. Forghieri, "Analytical results on channel capacity in uncompensated optical links with coherent detection: Erratum," Optics Express, vol. 20, no. 17, pp. 19610–19611, Aug. 2012.
- [16] A. Mecozzi and R.-J. Essiambre, "Nonlinear Shannon limit in pseudolinear coherent systems," J. Lightw. Technol., vol. 30, no. 12, pp. 2011–2024. Jun. 2012.
- [17] M. I. Yousefi, G. Kramer, and F. R. Kschischang, "An upper bound on the capacity of the single-user nonlinear Schrödinger channel," in Can. Workshop Inf. Theory (CWIT), St. John's, NL, Canada, July 2015; online at http://arxiv.org/abs/1502.06455.
- [18] K. Keykhosravi, E. Agrell, and G. Durisi, "A strictly increasing lower bound on the capacity of the fiber optical channel," Munich Workshop on Inform. Theory of Opt. Fiber (MIO), Munich, Germany, poster, Dec. 2015.
- [19] K. Keykhosravi, E. Agrell, and G. Durisi, "A monotonically increasing lower bound on the capacity of the fiber-optical channel," http://arxiv.org. Dec. 2015.