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Motivation

Finite-length scaling laws are based on the analysis of the
Peeling Decoder (PD)

− Very complex for spatially coupled LDPC codes
− Only applicable for the Binary Erasure Channel (BEC)

Question:
Can we obtain scaling laws analyzing the less complex Belief
Propagation (BP)?

LDPC Codes [1]

H =


1 1 1 1 0 0 0 0
1 1 0 0 1 0 0 1
0 0 1 1 0 1 1 0
0 0 0 0 1 1 1 1


Example: (2, 4) regular code

Regular (l , r) codes:
l ones in every column, respectively r ones in every row
Irregular codes:
Edge degree distributions described by polynomials

Graphical Representation as Tanner Graph (Tanner,1981):

Properties
LDPC codes can reach capacity
The decoding complexity stays linear

Decoding

Check equation for check node c:∑
k∈N(c)

vk = 0 mod 2

If variable nodes are erased due to the transmission over a binary
erasure channels (BEC), they can be iteratively restored with the
help of the knowledge of the rest of the graph of the code.

Protograph Based Construction [2]

Small Tanner graphs are used as a “blue print” of the structure
This structure gets copied several times
Similar connections are randomly permuted to obtain larger
girths which avoids dependencies during the iterative decoding

Advantages
The protograph representation can be used for analysis

(l , r , L)P Codes Based on Coupled Protographs [3]

1 Choose a simple (l , r) protograph
2 Couple L protographs to a spatially coupled protograph

3 Lift the coupled protograph with the “copy-and-permute”
operation

The convolutional-like band matrix H consists of submatrices Hi ,j
which are permutation matrices for edge permutations:

H =


H0,0 H0,1
H1,0 H1,1 H0,0 H0,1
H2,0 H2,1 H1,0 H1,1 H0,0 H0,1

H2,0 H2,1 H1,0 H1,1

H2,0 H2,1
. . .



Advantages
Systematic encoding is possible
The MAP threshold can be reached with iterative belief
propagation (BP) decoding [4, 3]

Belief Propagation Decoding

Messages are passed along the edges until the erasure probability
does not decrease anymore. The decrease of erasure probability is
used as stability criterion.

τ : Decoding iterations normalized by (ε ∗ −ε)
∆ε̂(τ): Average decrease of erasure probability of variable
nodes in iteration τ

Var [∆ε] (τ): Variance of ∆ε(τ) of all processes

φ1(τ, ζ): process covariance with time

φ(τ, ζ) = E [∆ε(τ)∆ε(ζ)] − ∆ε̂(τ)∆ε̂(ζ)

Analysis of the Belief Propagation
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Calculated ∆ε̂(τ) for the (l , r , L)P = (3, 6, 50)P ensemble for a varying ε. For
ε = 0.45, the subplot includes actual decoding trajectories.
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Simulated Var [∆ε] τ) for the (3, 6, 50)P ensembles for various ε and M.
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Estimation of the process covariance φ(τ, ζ) for the same ensembles for 2 points
ζ. All results are computed for ε = 0.45.

Conjecture of the Scaling Law [5]

Scaling laws stem from statistical physics where a system follows a
control parameter in a very specific way around a phase transition.
Around the threshold there holds a scaling law for LDPC codes
using an iterative erasure decoder:

P∗ ≈ 1 − exp
(

− (εL − τ∗)

µ0(M, ε, l , r)

)

(εL − τ∗) is the duration of the steady-state phase
The average survival time µ0 of ∆ε during the steady-state
phase is a function of ∆ε̂(τ), Var [∆ε(τ)].

These parameters depend on the code ensemble and the process
examined.
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Word error rate on the BEC for the (l , r , L)P = (3, 6, 50)P and the
(l , r , L)P = (3, 6, 100)P ensembles.

The resulting scaling law prediction using the BP process matches
the slope of the PD prediction closely.

Outview and Future Tasks

Can we analytically calculate variance and covariance?
Can we use this analysis for the AWGN channel?
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