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o Finite-length scaling laws are based on the analysis of the
Peeling Decoder (PD)

— Very complex for spatially coupled LDPC codes

— Only applicable for the Binary Erasure Channel (BEC)

Can we obtain scaling laws analyzing the less complex Belief
Propagation (BP)?

LDPC Codes [1]
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Example: (2,4) regular code

e Regular (/,r) codes:
| ones in every column, respectively r ones in every row

o lrregular codes:
Edge degree distributions described by polynomials

Graphical Representation as Tanner Graph (Tanner,1981):

Properties

o LDPC codes can reach capacity

o The decoding complexity stays linear

Check equation for check node c:
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If variable nodes are erased due to the transmission over a binary
erasure channels (BEC), they can be iteratively restored with the
help of the knowledge of the rest of the graph of the code.

Protograph Based Construction [2]

@ Small Tanner graphs are used as a “blue print” of the structure
@ This structure gets copied several times

@ Similar connections are randomly permuted to obtain larger
girths which avoids dependencies during the iterative decoding

Advantages
@ The protograph representation can be used for analysis

(I,r,L)p Codes Based on Coupled Protographs [3]
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@ Choose a simple (/, r) protograph

® Couple L protographs to a spatially coupled protograph

© Lift the coupled protograph with the “copy-and-permute”
operation

The convolutional-like band matrix H consists of submatrices H; ;
which are permutation matrices for edge permutations:
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Advantages

@ Systematic encoding is possible

@ The MAP threshold can be reached with iterative belief
propagation (BP) decoding [4, 3]

Belief Propagation Decoding

Messages are passed along the edges until the erasure probability
does not decrease anymore. The decrease of erasure probability is
used as stability criterion.

o 7: Decoding iterations normalized by (e * —¢)

o Aé(7): Average decrease of erasure probability of variable
nodes in iteration T

o Var [A€] (7): Variance of A¢(7) of all processes

@ ¢1(7,(): process covariance with time

¢(7, ) = E[Ae(r)Ae(Q)] — Aé(T)AE(C)

Analysis of the Belief Propagation
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Calculated Aé(r) for the (/,r,L)p = (3,6,50)p ensemble for a varying €. For
€ = 0.45, the subplot includes actual decoding trajectories.
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Estimation of the process covariance ¢(, () for the same ensembles for 2 points
¢. All results are computed for ¢ = 0.45.

Conjecture of the Scaling Law [5]

Scaling laws stem from statistical physics where a system follows a
control parameter in a very specific way around a phase transition.
Around the threshold there holds a scaling law for LDPC codes
using an iterative erasure decoder:

P 1 exp (_M>

po(M, e l,r)

o (eL — 7*) is the duration of the steady-state phase

@ The average survival time pg of Ae during the steady-state
phase is a function of A&(7), Var[Ae(T)].

These parameters depend on the code ensemble and the process
examined.
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Word error rate on the BEC for the (/,r,L)p = (3,6,50)» and the
(I,r,L)p = (3,6,100)p ensembles.
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The resulting scaling law prediction using the BP process matches
the slope of the PD prediction closely.
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Outview and Future Tasks

@ Can we analytically calculate variance and covariance?

@ Can we use this analysis for the AWGN channel?
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