# Finite-Length Scaling of Convolutional LDPC Codes Using Belief Propagation

### **Motivation**

- Finite-length scaling laws are based on the analysis of the Peeling Decoder (PD)
- Very complex for spatially coupled LDPC codes
- Only applicable for the Binary Erasure Channel (BEC)

### Question:

Can we obtain scaling laws analyzing the less complex Belief Propagation (BP)?

### LDPC Codes [1]

| H = | /1 | 1 | 1 | 1 | 0 | 0 | 0 | 0) |
|-----|----|---|---|---|---|---|---|----|
|     | 1  | 1 | 0 | 0 | 1 | 0 | 0 | 1  |
|     | 0  | 0 | 1 | 1 | 0 | 1 | 1 | 0  |
|     | 0/ | 0 | 0 | 0 | 1 | 1 | 1 | 1/ |

Example: (2, 4) regular code

- **Regular** (*I*, *r*) codes:
- *l* ones in every column, respectively *r* ones in every row
- Irregular codes:
- Edge degree distributions described by polynomials

Graphical Representation as Tanner Graph (Tanner, 1981):



### Properties

- LDPC codes can reach capacity
- The decoding complexity stays linear



If variable nodes are erased due to the transmission over a binary erasure channels (BEC), they can be iteratively restored with the help of the knowledge of the rest of the graph of the code.





- Small Tanner graphs are used as a "blue print" of the structure
- This structure gets copied several times

Protograph Based Construction [2]

• Similar connections are randomly permuted to obtain larger girths which avoids dependencies during the iterative decoding

### Advantages

• The protograph representation can be used for analysis



- **()** Choose a simple (I, r) protograph
- 2 Couple *L* protographs to a spatially coupled protograph



3 Lift the coupled protograph with the "copy-and-permute" operation

The convolutional-like band matrix **H** consists of submatrices  $H_{i,i}$ which are permutation matrices for edge permutations:

$$\label{eq:H} \textbf{H} = \begin{pmatrix} \textbf{H}_{0,0} & \textbf{H}_{0,1} \\ \textbf{H}_{1,0} & \textbf{H}_{1,1} & \textbf{H}_{0,0} & \textbf{H}_{0,1} \\ \textbf{H}_{2,0} & \textbf{H}_{2,1} & \textbf{H}_{1,0} & \textbf{H}_{1,1} & \textbf{H}_{0,0} & \textbf{H}_{0,1} \\ & \textbf{H}_{2,0} & \textbf{H}_{2,1} & \textbf{H}_{1,0} & \textbf{H}_{1,1} \\ & & \textbf{H}_{2,0} & \textbf{H}_{2,1} & & \textbf{H}_{2,0} & \textbf{H}_{2,1} \\ \end{pmatrix}$$

Advantages

- Systematic encoding is possible
- The MAP threshold can be reached with iterative belief propagation (BP) decoding [4, 3]

### Belief Propagation Decoding

used as stability criterion.

- nodes in iteration  $\tau$

 $\phi(\tau,$ 







Simulated Var  $[\Delta \epsilon] \tau$ ) for the  $(3, 6, 50)_{\mathcal{P}}$  ensembles for various  $\epsilon$  and M



Unterstützt von / Supported by



### Alexander von Humboldt Stiftung/Foundation

Markus Stinner, Pablo Olmos

markus.stinner@tum.de, olmos@tsc.uc3m.es

Messages are passed along the edges until the erasure probability does not decrease anymore. The decrease of erasure probability is

•  $\tau$ : Decoding iterations normalized by  $(\epsilon * -\epsilon)$ 

•  $\Delta \hat{\epsilon}(\tau)$ : Average decrease of erasure probability of variable

• Var  $[\Delta \epsilon](\tau)$ : Variance of  $\Delta \epsilon(\tau)$  of all processes

•  $\phi_1(\tau,\zeta)$ : process covariance with time

$$\zeta) = \mathbb{E}\left[\Delta\epsilon(\tau)\Delta\epsilon(\zeta)\right] - \Delta\hat{\epsilon}(\tau)\Delta\hat{\epsilon}(\zeta)$$

Calculated  $\Delta \hat{\epsilon}(\tau)$  for the  $(l, r, L)_{\mathcal{P}} = (3, 6, 50)_{\mathcal{P}}$  ensemble for a varying  $\epsilon$ . For  $\epsilon = 0.45$ , the subplot includes actual decoding trajectories.

### Conjecture of the Scaling Law [5]

Scaling laws stem from statistical physics where a system follows a control parameter in a very specific way around a phase transition. Around the threshold there holds a scaling law for LDPC codes using an iterative erasure decoder:

$$\mathcal{P}^* \approx 1 - \exp\left(-rac{(\epsilon L - \tau^*)}{\mu_0(M, \epsilon, I, r)}
ight)$$

- $(\epsilon L \tau^*)$  is the duration of the steady-state phase
- The average survival time  $\mu_0$  of  $\Delta \epsilon$  during the steady-state phase is a function of  $\Delta \hat{\epsilon}(\tau)$ ,  $\text{Var} [\Delta \epsilon(\tau)]$ .

These parameters depend on the code ensemble and the process examined.



The resulting scaling law prediction using the BP process matches the slope of the PD prediction closely.

### Outview and Future Tasks

- Can we analytically calculate variance and covariance?
- Can we use this analysis for the AWGN channel?

### References

- [1] R. Gallager, "Low-Density Parity-Check Codes," IEEE Trans. Inf. Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962. [Online]
- [2] J. Thorpe, "Low-Density Parity-Check (LDPC) Codes Constructed from Protographs," JPL IPN, Tech. Rep., 2003. [Online]
- [3] M. Lentmaier, G. P. Fettweis, K. S. Zigangirov, and D. J. Costello, 'Approaching Capacity with Asymptotically Regular LDPC Codes," Proc. Inf. Theory and Applicat. Workshop (ITA), pp. 173-177, 2009. [Online]
- [4] S. Kudekar, T. J. Richardson, and R. L. Urbanke, "Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform so well over the BEC," IEEE Trans. Inf. Theory, pp. 1-29, 2010. [Online]
- [5] P. M. Olmos and R. R. Urbanke, "A Closed-Form Scaling Law for Convolutional LDPC Codes Over the BEC," IEEE Inf. Theory Workshop (ITW), no. 1, pp. 1-5, Sep. 2013. [Online].



## Technische Universität München

Estimation of the process covariance  $\phi(\tau,\zeta)$  for the same ensembles for 2 points  $\zeta$ . All results are computed for  $\epsilon = 0.45$ .