Non-Binary LDPC Erasure Codes with Separated Low-Degree Variable Nodes

G. Garrammone, giuliano.garrammone@dlr.de

German Aerospace Center (DLR)

Abstract

We analyze a partially-structured ensemble of LDPC (erasure) codes: asymptotic thresholds and weight distribution. We design finite-length codes from this ensemble and we analyze them in terms of performance and decoding complexity.

Separated Variable Nodes (SVN) Ensemble

- The degree-2 VNs are all separated (type-e2 edges).
- Some of the degree-3 VNs are separated (type-e₃ edges).
- All possible type- e_1 (brown) edge permutations Π and all possible edge labelings from $\mathbb{F}_q \setminus \{0\}$ (uniform probability).
- Notation: V_2 : number of degree-2 VNs (type γ_2); V_3^S : number of separated degree-3 VNs (type γ_3); \tilde{V}_j : number of degree-j VNs of type γ_1 (brown).

BP and MAP Thresholds of SVN Ensembles

 $p_{E}(\epsilon)$: average extrinsic symbol erasure probability at the output of a decoder.

Weight Distribution of SVN Ensembles

The expected number of weight-I codewords for a code C from a SVN ensemble is

$$\mathbb{E}[A(\mathcal{C},I)] = \sum_{I:I_{\gamma_{2}}+I_{\gamma_{3}}+\sum_{j}\tilde{I}_{j}=I} {\binom{V_{2}}{I_{\gamma_{2}}}} {\binom{V_{3}}{I_{\gamma_{3}}}} \prod_{j} {\widetilde{V}_{j}}$$

$$\times \frac{\operatorname{Coeff}\left(\left(N^{-}(z)\right)^{2I_{\gamma_{2}}+3I_{\gamma_{3}}}\left(N^{+}(z)\right)^{m-2I_{\gamma_{2}}-3I_{\gamma_{3}}}, z^{\sum_{j}\tilde{I}_{j}\tilde{I}_{j}}\right)}{(q-1)^{-(I_{\gamma_{2}}+I_{\gamma_{3}}+\sum_{j}\tilde{I}_{j})} {\binom{m(d_{c}-1)}{\sum_{j}\tilde{I}_{j}\tilde{I}_{j}}} (q-1)^{\sum_{j}\tilde{I}_{j}\tilde{I}_{j}+2I_{\gamma_{2}}+3I_{\gamma_{3}}}}$$

with $I=(\tilde{I}_3,\ldots,\tilde{I}_{d_{v,\max}},I_{\gamma_2},I_{\gamma_3}),~0\leq I_{\gamma_2}\leq V_2,0\leq I_{\gamma_3}\leq V_3^S,0\leq \tilde{I}_j\leq \tilde{V}_j.~N^+(z)$ and

 $N^{-}(z)$ are univariate polynomials.

• The SVN ensemble has always a strictly positive typical minimum distance (larger than its unstructured counterpart).

Finite-Length Design: Performance

Short 4-ary (256, 128) LDPC code. n = 256 symbols of \mathbb{F}_4 .

Finite-Length Design: Decoding Speed

(256, 128) code on \mathbb{F}_4 over the PEC. n=256 packets.

IEEE Transactions on Communications, to appear

G. Garrammone, E. Paolini, B. Matuz, G. Liva, "Non-Binary LDPC Erasure Codes with Separated Low-Degree Variable Nodes"

