LDPC Coded Modulation with Probabilistic Shaping for Optical Fiber Systems

Tobias Fehenberger⁽¹⁾, Georg Böcherer⁽¹⁾, Alex Alvarado⁽²⁾, and Norbert Hanik⁽¹⁾ ⁽¹⁾Technische Universität München (TUM), Germany ⁽²⁾University College London (UCL), UK

Introduction

Abstract

An LDPC coded modulation scheme with probabilistic shaping, optimized interleavers and noniterative demapping is proposed. Full-field simulations show an increase in transmission distance by 8% compared to uniformly distributed input.

- High-order modulation formats are an established technique to increase spectral efficiency.
- ▶ Further improvement of the SE by probabilistic shaping, which allows optimization of the signaling without increasing the average launch power.
- ▶ Main advantage: No modifications of the digital-to-analog converters and the signal processing.

Probabilistic Shaping

- ▶ Probabilistic shaping uses constellations with nonuniform distributions on a regular grid.
- 16-QAM and 64-QAM are shaped by assigning larger probabilities to the points with lower energy.

Figure 1: Illustration of uniform (red) and shaped (blue) 16-QAM at unit energy. Here, shaped 16-QAM has a 30% larger minimum Euclidean distance and hence a higher noise tolerance than uniform input.

System Design

▶ The distribution matcher [3] output is emulated by directly generating the shaped bits.

▶ LDPC encoder and decoder are optimized for our coded modulation scheme [4].

References

- [1] P. Poggiolini et al., "The GN-model of fiber non-linear propagation and its applications," JLT 32(4), 2014.
- [2] F. R. Kschischang and S. Pasupathy, "Optimal nonuniform signaling for Gaussian channels," Trans. IT 39(3), 1993.
- P. Schulte and G. Böcherer, "Constant composition distribution matching," arXiv:1503.05133, 2015 [3]
- G. Böcherer, P. Schulte, and F. Steiner, "Bandwidth efficient and rate-compatible low-density parity-check coded modulation," arXiv:1502.02733, 2015.
- [5] B. P. Smith et al., "Staircase codes: FEC for 100 Gb/s OTN," JLT 30(1), 2012.

System Parameters		Fiber Parameter	
WDM channels	15	Attenuation α	0.2 dl
WDM spacing	30 GHz	Nonlinearity γ	1.3 (\
Symbol rate	28 GBaud	Dispersion D	17 ps
Pulse shaping	Root-raised-cosine	Length per span	100 k
RRC roll-off	5% roll-off	Amplification	EDFA

Technische Universität München