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Why is synchronisation boring?

Little mention of synchronisation in
most books (Wozencraft & Jacobs,
Gallager, Lapidoth, Sklar, Madhow)
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and

Gerhard used to think it wasn't very ex-
citing!




Periodic frame synchronisation
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Periodic frame synchronisation

N N N N

?

For each period,
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Without loss of generality, we assume that / = 1 is the correct
decision.

3/17



Code-only synchronisation

Channel Yl""
Source Encoder

where every block of length N is a codeword in C. Log likelihood
synchroniser:

P(yI+N 1’XI+N 1 EC)
P( I-I-N 1|XI+N 1 ¢C)

i = argmax; log

ML synchroniser:

I = argmax; max P(y’."J“N_l|XI."+’V—3l = x)
Xe

If we use a code family with exponential error decay P, < 27N,

then the argument of the max in the ML synchroniser will be on
the order 1 — 27N for j = 1 and 27¢N for i # 1. The union bound
gives a probability of synchronisation failure on the order

8N
'Dsync failure ~ S N2~



Information theory and Synchronisation

There is no
synchronisation problem

in information theory!
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Information theory and Synchronisation

Abstract—This paper considers the optimum method for locating

noise ratios compared to a pure correlation rule, Extensions are
given to the “‘phase-shift keyed (PSK) sync” case where the
detector output has a binary ambiguity and to the case of Gaussian
data.

There is no
synchronisation problem

in information theory!

L ANSAETON % coMmUNICTIONS, ot con 20, 80,2, s, 1072 us
Optimum Frame Synchronization

JAMES L. MASSEY, reLLow, 1888

the receiver can make tentative bit decisions. Section
1T gives the necessary modification for the “phase-
shift keyed (PSK) sync” ease where the bit values are
ambiguous until aiter frame synchronization is ob-
tained. Section IV contains the results of simulations
comparing the performance of the optimum rule and
the correlation rule. Section V gives a derivation of the
optimum sync word locating rule when the data, rather
than being random binary digits, are Gaussian random




Preamble Synchronisation

(ev—-t [LN-r [LN-L [LvN-L

—
?
e Codeword X|11,...,Xy from an (N — L, K) code with rate
Re = K/(N - L)
o Fixed preamble X} = pl known to transmitter and receiver
@ Overall rate: N_L K
R=Rc—— = —
N TN
@ Preamble = wasted rate (does not contribute when decoding
data)
e Optimal (ML) synchroniser:

L
i =argmax;_y_w [ [ Pyix(vivk—1lpe)
k=1
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Code aided synchronisation

hividl
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Known W\ ,4/\
”("’0,‘ {
preamble \~0.
/ﬂg Vs Q)
.0
L

@ Use a subset of m linear constraints to enhance performance
@ ML synchroniser:

L
2 NjyN
I =argmaxj_j H Pyix(Vitk—1lpi) Pr{y[ [X[" € Cm}
k=1
where C,, is the set of sequences that satisfies the m
constraints
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Sudoku
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Permutation constraints for frame synchronisation

74
\

ol }45:‘\\4)01

@ g-ary LDPC code with m added non-overlapping permutation
(non-linear, SUDOKU-like) constraints, each involving g
variables in the length K systematic part

lo Nm x gKk—ma log, q' — mq + K
o Rate: R — gq((q)N g™ _m gqumq




Synchronisation with permutation constraints

@ ML synchronisation:

m—1 q
1 = argmax; H Z H Py ix (Vitng+k|xk) (1)

n=0 XfESq k=1

where S is the symmetric group of permutations of
{1,2,...,q}.

o Notation: let y, = y; , and P(y, |X) be the matrix whose
(i,j) entry is Py|X(yk+, 1|j) where we assume that matrix
indices are numbered from 1 to g, and for this definition we
momentarily assume that X is defined over an alphabet
{1,2,...,q9}

@ Then we can express (1) as follows

k+q—1

m—1

1 = argmax; H perm P(anﬂ\ﬁ)
n=0

where perm(A) denotes the permanent of the matrix A.
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Examples on GF(5) for the erasure channel

Known preamble: n

Preamble sync:  [2]1[3]2[4[3][1]0]2]1]0]3]0]2]1]3]

Linearconstraint:’2|1|3|2|4|3|1|0|2|1|0|3|0|2|1|3‘

Permutation
constraint: ’2|1|3|2|4|3|1|O|2|1|0|3|0|2|1|3‘
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Examples on GF(5) for the erasure channel

Known preamble: n

3/2]4[3|@o2]1]o0

Linear constraint: 3 | 2 | 4 | 3 0 | 2 | 1 | 0

Permutation
constraint:

3[2[4|3 | o]2]1]0
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Fair comparisons: the devil is the detail!

Synchronisation
performance?

Rate?
Block length?

Decoding
performance?

Preamble

@ Rate and synchronisation performance can be computed (or
approximated) analytically.

o Calibrate all techniques to equal rate, equal synchronisation
probability and equal block length and compare on the basis
of decoding performance.
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Bounds for preamble-based synchronisation

@ Threshold synchroniser, metric
L

. 1
(i) = -7 > log Py x (yitk-1lpe)
k=1

o finds the set D = {i : p(i) < 0},
if |'D| =1, pick i € D
otherwise declare a failure.

@ Chernoff bound for the probability of successful
synchronisation:

Psuccess = Pr {H(l) <6 AND ,LL(i) > 0,Vi#£ 1}
> (1 _ engl(eﬁl)) (1 _ eL$2(9,&2)) N1

where £1(0,91) =410 —log _, (Py x(yx))' 7 and
&(0,%2) = 420 +log >, Py (y)(Pyx(y[x)) 7.
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Exact expressions for the BSC

@ Threshold synchroniser:

e )50

where kg = max, {p¥(1 — p)-=F > e~ L0}

@ ML synchroniser:

L 11
Ps'\L/JItlt_cess:Z <k>pk(1_p)L_k 1_27 <J>

k=0 j=0
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More about bounds

@ We derived similar bounds and exact expressions for
permutation constraints based synchronisers. These bounds
do not reduce to single-variable expressions and require sums
over g! terms.

@ Exact expressions for both regimes can only be computed for
small values of L

@ For example, for N = 400, L = 40, BSC p =0.1, 8 = 0.6, the
Chernoff bound for preamble-based synchronisation yields
Psuccess = 0.4767 while the exact expression gives
Psuccess = 0.8688

@ Although the bounds may be tight asymptotically or even at
finite lengths when represented in terms of rate, we need to
calibrate for equal probability of synchronisation to get a fair
comparison and the bounds seem insufficiently tight for this
purpose
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Early performance comparisons
e GF(4), N=1000,L=8, m=5

Block error probability

01 0.12 0.14 0.16 0.18 0.2 0.22 024 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
Erasure probability
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Conclusion

@ | am still not sure I'm 100% in love with synchronisation

@ But it's beginning to grow on me
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