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Why is synchronisation boring?

Little mention of synchronisation in
most books (Wozencraft & Jacobs,
Gallager, Lapidoth, Sklar, Madhow)

and

Gerhard used to think it wasn’t very ex-
citing!
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Periodic frame synchronisation

N N N N · · ·· · ·

?

For each period,

N

Y1,Y2, . . . ,YN

N

YN+1,YN+2, . . .

i?

DMC
X1,X2, . . . Y1,Y2, . . .

Without loss of generality, we assume that i = 1 is the correct
decision.
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Code-only synchronisation

Source Channel
Encoder DMC

X1, . . . Y1, . . .

where every block of length N is a codeword in C. Log likelihood
synchroniser:

î = argmaxi log
P(y i+N−1

i |X i+N−1
i ∈ C)

P(y i+N−1
i |X i+N−1

i /∈ C)

ML synchroniser:

î = argmaxi max
x∈C

P(y i+N−1
i |X i+N−1

i = x)

If we use a code family with exponential error decay Pe ≤ 2−EN ,
then the argument of the max in the ML synchroniser will be on
the order 1− 2−EN for i = 1 and 2−EN for i 6= 1. The union bound
gives a probability of synchronisation failure on the order
Psync failure . N2−EN .
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Information theory and Synchronisation

There is no
synchronisation problem
in information theory!

IEEE TRANSACTIONS O N  COMMUNICATIONS, VOL. COM-20, NO. 2, APRIL 1972 115 

Optimum Frame  Synchronization 
JAMES L. MASSEY, FELLOW, IEEE 

Abstract-This paper considers the optimum method for locating 
a  sync word periodically imbedded  in binary data  and received over 
the additive white Gaussian noise  channel. It  is shown that  the 
optimum rule is to select the location that maximizes the  sum of the 
correlation and a correction term.  Simulations are reported that 
show approximately a 3-dB improvement at  interesting signal-to- 
noise  ratios compared to a  pure  correlation  rule.  Extensions are 
given to  the “phase-shift  keyed (PSK) sync” case where the 
detector  output has a  binary  ambiguity and  to  the  case of Gaussian 
data. 

I. INTRODUCTION 
HE MOST  widely used method for providing 
frame  synchronization  in  a  binary  signaling  scheme 
is to  insert  a fixed binary  pattern or “sync  word” 

periodically  into the  data  stream. On the  assumption 
that  symbol  synchronization  has  already been obtained, 
the receiver  obtains  frame  synchronization  by  locating 
the position of the  sync  word  in  the received data 
stream. 

I n  his  pioneering  work [l] on  frame  synchronization, 
Barker assumed that  the  sync word  would  be located 
by  passing  the received digits  through  a  “pattern recog- 
nizer,”  which  was  simply  a  device to  correlate successive 
L-digit  segments of the received  sequence with  the L- 
digit  sync  word.  The  segment  giving  the  nlaximum 
correlation would  be taken  as  the location of the  sync 
word.  Virtually  all  subsequent  work  on  frame  synchroni- 
zation  has  assumed  this  same  correlation decision rule, 
perhaps  for  simplicity  and  perhaps  in  the belief that  this 
decision rule  was  optimal. I n  his  encyclopedic  coverage 
of synchronization,  Stiffer 12, pp. 499-5021 recognizes 
that  the  data surrounding  the  sync  word  should be 
taken  into  account  by  an  optimal decision rule,  but  in- 
dicates that   the analysis becomes intractable  and  that 
the  resulting  true  optimal decision rule would  be im- 
practical  to  implement. 

In  this  paper, we derive  the  optimal decision rule 
for  locating  the  sync  word on the  additive  white  Gaus- 
sian  noise  channel and show that  the effect of the  data 
is  merely  to  add  a  “correction”  term  to  the  correlator 
output so that  the optimum  rule  is  nearly  as  simple  to 
implement  as  the  ordinary  correlation  rule.  This  deriva- 
tion  is given in  Section I1 for  the  standard  case  where 
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the  receiver  can  make  tentative  bit decisions.  Section 
I11 gives the necessary  modification  for the  “phase- 
shift  keyed  (PSK)  sync”  case where the  bit values  are 
ambiguous  until  after  frame  synchronization  is ob- 
tained.  Section I V  contains  the  results of simulations 
comparing  the  performance of the  optimum  rule  and 
the correlation  rule.  Section  V  gives  a  derivation  of the 
optimum  sync  word  locating  rule when the  data,  rather 
than being  random  binary  digits,  are  Gaussian  random 
variables  as  might be the case  in  some  pulse-amplitude 
modulation  schemes. 

It should  be  emphasized tha t  our  analysis  applies 
only  to  the  case of a  sync  word  periodically  imbedded 
into  a  data  stream, which is the  usual  case  in  space 
telemetry.  Specifically,  it  does  not  apply to the “one- 
shot”  synchronization  problem  where  the  sync  word 
is  prefixed to  the  data  stream  and is  itself  preceded 
either  by no  signal  or  by  a  periodic 1-0 pattern. It re- 
mains  as  an  interesting  open  problem  to find the  opti- 
mum  synchronization  rule  for  this  one-shot  case. 

IZ. DERIVATION OF THE OPTIMAL  SYNC-WORD 
LOCATING RULE 

Let N denote  the  frame  length, i.e., each  L-digit  sync 
word  is  followed by N-L random  binary-data  bits.  We 
assume that  the receiver  is to process an N digit  span 
of the received  sequence  in order  to  locate  the  sync  word 
contained  therein. If n such  spans  are  actually  to  be 
used,  the  problem  reduces  to  the  above  for  a  frame 
length of nN digits  and  a  sync word of length nL. 

Let T = (yo, . . . , r N - l )  denote  the  received  span  to 
be processed  where each rr is the  detector  output  over 
one of the assumed-known bit  intervals.  The  sync  word is 
a priori equally  likely to  begin in  any of the N positions 
of T .  We will consider  digit ro to  follow digit r N - 1  so as to  
account  for  the  case  when  the  sync  word  begins  somewhere 
in  the  last L-1 digits of T and ali  subscripts  on  received 
digits will hereafter  be  taken  modulo N .  For example, 
r N + Z  is the  digit rz. 

Let s = (so, sl, . . . , s[,-,), where  each si is either +1 
or -1, be  the  sync word and  let d = ( d L ,  a,,, ,  . . * , 
denote N-L random  data  bits where the di are  statistically 
independent  random  variables  satisfying P r  [di = +1] = 
Pr [di = - 11 = 3. Consider  next  the  concatenation 
sd = (so, s l ,  . . . , sL- , ,  d L ,  . . . , Let T be  the cyclic 
shift  operator defined by T(sd)  = ( d N - 1 ,  so, . . 1 S L - 1 ,  

d,, . . . , dN-,J. If the  sync  word  actually  begins  in  digit 
rm of T ,  we can  express  the  received  segment  as 

T = 43 T“(sd) + n (1) 

where  each  received  digit  would  have  value  either + z/E 

5 / 17



Information theory and Synchronisation

There is no
synchronisation problem
in information theory!

IEEE TRANSACTIONS O N  COMMUNICATIONS, VOL. COM-20, NO. 2, APRIL 1972 115 

Optimum Frame  Synchronization 
JAMES L. MASSEY, FELLOW, IEEE 

Abstract-This paper considers the optimum method for locating 
a  sync word periodically imbedded  in binary data  and received over 
the additive white Gaussian noise  channel. It  is shown that  the 
optimum rule is to select the location that maximizes the  sum of the 
correlation and a correction term.  Simulations are reported that 
show approximately a 3-dB improvement at  interesting signal-to- 
noise  ratios compared to a  pure  correlation  rule.  Extensions are 
given to  the “phase-shift  keyed (PSK) sync” case where the 
detector  output has a  binary  ambiguity and  to  the  case of Gaussian 
data. 

I. INTRODUCTION 
HE MOST  widely used method for providing 
frame  synchronization  in  a  binary  signaling  scheme 
is to  insert  a fixed binary  pattern or “sync  word” 

periodically  into the  data  stream. On the  assumption 
that  symbol  synchronization  has  already been obtained, 
the receiver  obtains  frame  synchronization  by  locating 
the position of the  sync  word  in  the received data 
stream. 

I n  his  pioneering  work [l] on  frame  synchronization, 
Barker assumed that  the  sync word  would  be located 
by  passing  the received digits  through  a  “pattern recog- 
nizer,”  which  was  simply  a  device to  correlate successive 
L-digit  segments of the received  sequence with  the L- 
digit  sync  word.  The  segment  giving  the  nlaximum 
correlation would  be taken  as  the location of the  sync 
word.  Virtually  all  subsequent  work  on  frame  synchroni- 
zation  has  assumed  this  same  correlation decision rule, 
perhaps  for  simplicity  and  perhaps  in  the belief that  this 
decision rule  was  optimal. I n  his  encyclopedic  coverage 
of synchronization,  Stiffer 12, pp. 499-5021 recognizes 
that  the  data surrounding  the  sync  word  should be 
taken  into  account  by  an  optimal decision rule,  but  in- 
dicates that   the analysis becomes intractable  and  that 
the  resulting  true  optimal decision rule would  be im- 
practical  to  implement. 

In  this  paper, we derive  the  optimal decision rule 
for  locating  the  sync  word on the  additive  white  Gaus- 
sian  noise  channel and show that  the effect of the  data 
is  merely  to  add  a  “correction”  term  to  the  correlator 
output so that  the optimum  rule  is  nearly  as  simple  to 
implement  as  the  ordinary  correlation  rule.  This  deriva- 
tion  is given in  Section I1 for  the  standard  case  where 

the  IEEE Communications  Society for publicat,ion without oral 
Paper approved by  the Communication Theory  Committee of 

presentation.  This work was supported by the  National Aeronau- 
tics and Space Administration under NASA GRANT  NGL 15- 

.dard Space Flight  Center.  Manuscript received August 16, 1971. 
004-026 a t  the University of Notre  Dame  in liaison with the God- 

The  author is with the  Department of Electrical  Engineering. 
University of Notre  Dame,  Notre  Dame,  Ind. 46556. He is on 
leave a t  the  Laboratory for Communication  Theory,  Royal Tech- 
nical University of Denmark, Lyngby, Denmark. 

the  receiver  can  make  tentative  bit decisions.  Section 
I11 gives the necessary  modification  for the  “phase- 
shift  keyed  (PSK)  sync”  case where the  bit values  are 
ambiguous  until  after  frame  synchronization  is ob- 
tained.  Section I V  contains  the  results of simulations 
comparing  the  performance of the  optimum  rule  and 
the correlation  rule.  Section  V  gives  a  derivation  of the 
optimum  sync  word  locating  rule when the  data,  rather 
than being  random  binary  digits,  are  Gaussian  random 
variables  as  might be the case  in  some  pulse-amplitude 
modulation  schemes. 

It should  be  emphasized tha t  our  analysis  applies 
only  to  the  case of a  sync  word  periodically  imbedded 
into  a  data  stream, which is the  usual  case  in  space 
telemetry.  Specifically,  it  does  not  apply to the “one- 
shot”  synchronization  problem  where  the  sync  word 
is  prefixed to  the  data  stream  and is  itself  preceded 
either  by no  signal  or  by  a  periodic 1-0 pattern. It re- 
mains  as  an  interesting  open  problem  to find the  opti- 
mum  synchronization  rule  for  this  one-shot  case. 

IZ. DERIVATION OF THE OPTIMAL  SYNC-WORD 
LOCATING RULE 

Let N denote  the  frame  length, i.e., each  L-digit  sync 
word  is  followed by N-L random  binary-data  bits.  We 
assume that  the receiver  is to process an N digit  span 
of the received  sequence  in order  to  locate  the  sync  word 
contained  therein. If n such  spans  are  actually  to  be 
used,  the  problem  reduces  to  the  above  for  a  frame 
length of nN digits  and  a  sync word of length nL. 

Let T = (yo, . . . , r N - l )  denote  the  received  span  to 
be processed  where each rr is the  detector  output  over 
one of the assumed-known bit  intervals.  The  sync  word is 
a priori equally  likely to  begin in  any of the N positions 
of T .  We will consider  digit ro to  follow digit r N - 1  so as to  
account  for  the  case  when  the  sync  word  begins  somewhere 
in  the  last L-1 digits of T and ali  subscripts  on  received 
digits will hereafter  be  taken  modulo N .  For example, 
r N + Z  is the  digit rz. 

Let s = (so, sl, . . . , s[,-,), where  each si is either +1 
or -1, be  the  sync word and  let d = ( d L ,  a,,, ,  . . * , 
denote N-L random  data  bits where the di are  statistically 
independent  random  variables  satisfying P r  [di = +1] = 
Pr [di = - 11 = 3. Consider  next  the  concatenation 
sd = (so, s l ,  . . . , sL- , ,  d L ,  . . . , Let T be  the cyclic 
shift  operator defined by T(sd)  = ( d N - 1 ,  so, . . 1 S L - 1 ,  

d,, . . . , dN-,J. If the  sync  word  actually  begins  in  digit 
rm of T ,  we can  express  the  received  segment  as 

T = 43 T“(sd) + n (1) 

where  each  received  digit  would  have  value  either + z/E 

5 / 17



Preamble Synchronisation

N − L N − L N − L N − LL L L L · · ·· · ·

?

Codeword XL+1, . . . ,XN from an (N − L,K ) code with rate
Rc = K/(N − L)

Fixed preamble X L
1 = pL1 known to transmitter and receiver

Overall rate:

R = RC
N − L

N
=

K

N
Preamble = wasted rate (does not contribute when decoding
data)

Optimal (ML) synchroniser:

î = argmaxi=1...N

L∏
k=1

PY |X (yi+k−1|pk)
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Code aided synchronisation

. . . . . .

. . .

. . .

N − LL

Known

preamble

Use a subset of m linear constraints to enhance performance
ML synchroniser:

î = argmaxi=1...N

L∏
k=1

PY |X (yi+k−1|pk) Pr{yNL |XN
L ∈ Cm}

where Cm is the set of sequences that satisfies the m
constraints 7 / 17



Sudoku

1 5
6 2 1 5

8 9 2
8 3
7 1
5 9

4 3 8
3 2 1 9

4 7
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Permutation constraints for frame synchronisation

. . .

. . .

. . .

N

q-ary LDPC code with m added non-overlapping permutation
(non-linear, SUDOKU-like) constraints, each involving q
variables in the length K systematic part

Rate: R =
logq((q!)m × qK−mq)

N
=

m logq q!−mq + K

N
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Synchronisation with permutation constraints

ML synchronisation:

î = argmaxi

m−1∏
n=0

∑
xq1∈Sq

q∏
k=1

PY |X (yi+nq+k |xk) (1)

where Sq is the symmetric group of permutations of
{1, 2, . . . , q}.
Notation: let y

k
= yk+q−1

i , and P(y
k
|X ) be the matrix whose

(i , j) entry is PY |X (yk+i−1|j) where we assume that matrix
indices are numbered from 1 to q, and for this definition we
momentarily assume that X is defined over an alphabet
{1, 2, . . . , q}
Then we can express (1) as follows

î = argmaxi

m−1∏
n=0

perm P(y
nq+1
|X )

where perm(A) denotes the permanent of the matrix A.
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Examples on GF(5) for the erasure channel

Known preamble:

Preamble sync:

Linear constraint:

Permutation
constraint:

4 3 1 0 2

2 1 3 2 4 3 1 0 2 1 0 3 0 2 1 3

2 1 3 2 4 3 1 0 2 1 0 3 0 2 1 3

2 1 3 2 4 3 1 0 2 1 0 3 0 2 1 3
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Fair comparisons: the devil is the detail!

Preamble Permutations

?
Synchronisation
performance?

Rate?

Block length?

Decoding
performance?

Rate and synchronisation performance can be computed (or
approximated) analytically.
Calibrate all techniques to equal rate, equal synchronisation
probability and equal block length and compare on the basis
of decoding performance.
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Bounds for preamble-based synchronisation

Threshold synchroniser, metric

µ(i) = −1

L

L∑
k=1

log PY |X (yi+k−1|pk)

finds the set D = {i : µ(i) ≤ θ},{
if |D| = 1, pick i ∈ D
otherwise declare a failure.

Chernoff bound for the probability of successful
synchronisation:

Psuccess = Pr {µ(1) ≤ θ AND µ(i) > θ,∀i 6= 1}

≥
(

1− e−LE1(θ,γ̂1)
)(

1− eLE2(θ,γ̂2)
)N−1

where E1(θ, γ̂1) = γ̂1θ − log
∑

y (PY |X (y |x))1−γ̂1 and

E2(θ, γ̂2) = γ̂2θ + log
∑

y PY (y)(PY |X (y |x))γ̂2 .
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Exact expressions for the BSC

Threshold synchroniser:

Psuccess =

(
kθ∑
k=0

(
L

k

)
pk(1− p)L−k

)(
1− 1

2L

kθ∑
k=0

(
L

k

))N−1

where kθ = maxk{pk(1− p)L−k > e−Lθ}
ML synchroniser:

PML
success =

L∑
k=0

(
L

k

)
pk(1− p)L−k

1− 1

2L

k−1∑
j=0

(
L

j

)N−1
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More about bounds

We derived similar bounds and exact expressions for
permutation constraints based synchronisers. These bounds
do not reduce to single-variable expressions and require sums
over q! terms.

Exact expressions for both regimes can only be computed for
small values of L

For example, for N = 400, L = 40, BSC p = 0.1, θ = 0.6, the
Chernoff bound for preamble-based synchronisation yields
Psuccess ≥ 0.4767 while the exact expression gives
Psuccess = 0.8688

Although the bounds may be tight asymptotically or even at
finite lengths when represented in terms of rate, we need to
calibrate for equal probability of synchronisation to get a fair
comparison and the bounds seem insufficiently tight for this
purpose
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Early performance comparisons
GF(4), N = 1000, L = 8, m = 5

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
10−5

10−4

10−3

10−2

10−1

100

Erasure probability

B
lo

ck
er
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r
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ob

ab
ili

ty
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Conclusion

I am still not sure I’m 100% in love with synchronisation

But it’s beginning to grow on me

17 / 17


