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Product Codes

Product code construction introduced in [Elias1954].

Recent literature addresses efficient iterative decoding (e.g.,
[Tanner1981]–[Pyndiah1998]).

[Wolf1978]: maximum-likelihood (ML) decoding can be performed very
efficiently for some product codes.

? [Elias1954] P. Elias, “Error-free coding,” IRE T-IT, 1954.

? [Wolf1978] J. K. Wolf, “Efficient maximum likelihood decoding of linear block codes using a trellis,” IEEE T-IT, 1978.

? [Tanner1981] R. Tanner, “A recursive approach to low complexity codes,” IEEE T-IT, 1981.

? [Hagenauer1996] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,”
IEEE T-IT, 1996.

? [Pyndiah1998] R. Pyndiah, “Near optimum decoding of product codes: Block turbo codes,” IEEE T-COM 1998.
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Product Code Trellis

[Wolf1978]: Trellis representation with a maximum number of states

min{2(n1−k1)k2 , 2(n2−k2)k1}

per trellis section.

Particularly beneficial when one component code has low dimension (e.g.,
small k2) and one has a small number of parity bits (e.g., small n1 − k1).

Particular case: the high rate code is a single parity-check code
(n1 − k1 = 1). In this case:

2k2 states per trellis section.

Hereafter we focus on this class of product codes. Row code C1 is SPC,
column code C2 is any linear block code.
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Some Notation (1/2)
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x = [x1 x2 · · · xn1 ]
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yi = xi + ν i
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Some Notation (2/2)

Length-k2 vectors mT
1 ,m

T
2 , . . . ,m

T
n1

regarded as the binary vector
representations of the elements of finite field Fq with q = 2k2 .

[µ1, µ2, . . . , µn1 ] := [mT
1 ,m

T
2 , . . . ,m

T
n1

], µi ∈ Fq, thus

µ1 + µ2 + · · ·+ µn1 = 0

Encoder (equivalent perspective):

(n1, n1 − 1) SPC
over Fq

Cq

H = [1 1 · · · 1]

M
c′ = (µ1, µ2, . . . , µn1 )

modulator

M : µi ∈ Fq 7→ xi = 1− 2ci

x = [x1 x2 · · · xn1 ]
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ML Decoding

SPC code Cq Viterbi decoded over its trellis.

The trellis comprises q = 2k2 states (apart from terminations). States are of
subsequent layers are “fully connected”. Example (k2 = 2):

0

1

α2

0

1

α2

Si−1 Si

0

1

α

α2

α α

Branch metrics 〈xi , yi 〉.

Label of edge from Si−1 = s
to Si = s ′: s + s ′ ∈ Fq.

Neglecting terminations, complexity proportional to k1q
2 = k122k2 .
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Example

Row code: (8, 7) SPC code. Column code: (24, 12) Golay code.

n = 192, k = 84, d = 16, Amin = 28× 759 = 21252.

Number of states: 212. Number of edges per trellis section: 224.
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SPC(8, 7) × Golay(24, 12) - Monte Carlo

SPC(8, 7) × Golay(24, 12) - truncated UB

1
Q: Possible to reduce complexity while preserving performance?
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Symbol-Wise MAP Decoding

To reduce complexity:

. Switch to symbol-wise optimum MAP decoding:

µ̂i = arg max
ω∈Fq

Pr{µi = ω|y}

. Use fast Fourier transform.

Using BCJR we have

Li (ω) := Pr{µi = ω|y} =
∑

s,s′:s+s′=ω

ϕi−1(s)γi (s, s
′)βi (s

′)

with standard meaning for the forward (ϕ), backward (β), and branch
transition (γ) metrics.
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Branch Metric

Defining s ′ = s + ω, the branch transition metric may be computed as

γi (s, s
′) ∝ (2πσ2)n2/2 exp

(
− 1

2σ2
〈yi ,M(ω)〉

)
=: γi (s + s ′)

=: γi (ω)

An inner product of length-n2 vectors for each ω ∈ Fq.

Complexity of branch metric calculation is O(k1k22k2 ).
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APP Calculation (1/2)

As usual we have

ϕi (s) =
∑
s′

ϕi−1(s ′)γi (s
′, s) and βi (s) =

∑
s′

βi+1(s ′)γi+1(s, s ′)

Let
ϕi =

(
ϕi (0), ϕi (1), . . . , ϕi (α

q−2)
)

βi =
(
βi (0), βi (1), . . . , βi (α

q−2)
)

γ i =
(
γi (0), γi (1), . . . , γi (α

q−2)
)

Li =
(
Li (0), Li (1), . . . , Li (α

q−2)
)

then
ϕi = ϕi−1 ~ γ i

βi = βi+1 ~ γ i+1

where ~ denotes convolution.
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APP Calculation (2/2)

Next

Li (ω) =
∑

s,s′:s+s′=ω

ϕi−1(s)γi (s, s
′)βi (s

′)

= γi (ω)
∑
s

ϕi−1(s)βi (s + ω)

so (· denotes element-wise multiplication)

Li = γ i · (ϕi−1 ~ βi )

= γ i ·
((

~i−1
j=1γ j

)
~
(
~n1

j=i+1γ j

))
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Using FFT

To calculate Li we have to take the convolution of all vectors γ j but γ i .

In principle complexity of convolution scales as O(q2).

However, complexity reduced to O(q log2 q) by applying fast Fourier
transform on finite Abelian groups (in this case equal to Hadamard
transform):

Li = γ i · H
((
·i−1
j=1H(γ j)

)
·
(
·n1

j=i+1H(γ j)
))

Complexity O(k122k2 ) under Viterbi decoding is turned into O(k1k22k2 ).
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Improving Multiplicity of Minimum Weight Codewords

We have

d = 2d2 and Amin =
n1(n1 − 1)

2
Amin,2

To preserve d = 2d2 while reducing Amin, we replace H = [1 1 · · · 1] with
H′ = [β1 β2 · · · βn1 ] with βi ∈ Fq \ {0}.
Upon a uniformly random choice of β1, β2, . . . , βn1 we expect

Ā′min =
n1(n1 − 1)

2

A2
min,2

2k2 − 1

(n1, n1 − 1) SPC
over Fq

Cq

H = [β1 β2 · · · βn1 ]

M
c′ = (µ1, µ2, . . . , µn1 )

modulator

M : µi ∈ Fq 7→ xi = 1− 2ci

x = [x1 x2 · · · xn1 ]
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Numerical Results

Consider again the (8, 7) SPC × (24, 12) Golay code.

Decoded by:

. The BCJR algorithm to the component code trellises, iterating the soft
information exchange (50 iterations max);

. The BCJR algorithm, by weighting the soft-output of each component
decoder by a factor 1/2 [Pyndiah1998];

. The symbol-wise MAP decoder.

Additionally, we consider a second code (CC) with the same parameters but
designed using the H′ = [β1 β2 · · · βn1 ] matrix approach.
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Numerical Results
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Conclusion

Optimum decoding investigated for product codes given by concatenation of
a binary SPC code with a low-dimension binary linear block code.

Decoding complexity can be reduced further with respect to block-wise ML
decoding by approaching the problem as a symbol-wise MAP decoding.

A generalization of the code construction, enjoying the same low-complexity
decoding principle is presented and analyzed, achieving additional coding
gains.
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