| Background<br>000000 | Reduced Complexity Decoder | Numerical Results | Conclusion<br>00 |
|----------------------|----------------------------|-------------------|------------------|
|                      |                            |                   |                  |

### On Optimum Decoding of Certain Product Codes

#### Enrico Paolini

University of Bologna, Italy

work with: Gianluigi Liva and Marco Chiani

Munich Workshop on Coding and Modulation Munich, Germany, July 31st, 2015

| Background<br>000000 | Reduced Complexity Decoder | Numerical Results | Conclusion<br>00 |
|----------------------|----------------------------|-------------------|------------------|
| WS Topics            |                            |                   |                  |

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

- Non-binary LDPC and Turbo codes
- Spatially-coupled codes
- Polar codes
- Lattice codes
- $\checkmark\,$  Decoding for short block lengths

| Background<br>200000 | Reduced Complexity Decoder | Numerical Results | Conclusion<br>00 |
|----------------------|----------------------------|-------------------|------------------|
|                      |                            |                   |                  |

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

#### Outline

- ML decoding of product codes
- Reduced complexity decoder
- Numerical results
- Conclusion

| Background<br>●00000 | Reduced Complexity Decoder | Numerical Results | Conclusion<br>00 |
|----------------------|----------------------------|-------------------|------------------|
| Product Co           | odes                       |                   |                  |

- Product code construction introduced in [Elias1954].
- Recent literature addresses efficient iterative decoding (e.g., [Tanner1981]–[Pyndiah1998]).
- [Wolf1978]: maximum-likelihood (ML) decoding can be performed very efficiently for some product codes.

- \* [Wolf1978] J. K. Wolf, "Efficient maximum likelihood decoding of linear block codes using a trellis," IEEE T-IT, 1978.
- \* [Tanner1981] R. Tanner, "A recursive approach to low complexity codes," IEEE T-IT, 1981.
- [Hagenauer1996] J. Hagenauer, E. Offer, and L. Papke, "Iterative decoding of binary block and convolutional codes," IEEE T-IT, 1996.
- \* [Pyndiah1998] R. Pyndiah, "Near optimum decoding of product codes: Block turbo codes," IEEE T-COM 1998.

<sup>\* [</sup>Elias1954] P. Elias, "Error-free coding," IRE T-IT, 1954.

| Background<br>000000 | Reduced Complexity Decoder | Numerical Results | Conclusion<br>00 |
|----------------------|----------------------------|-------------------|------------------|
| Product Code         | Trellis                    |                   |                  |

• [Wolf1978]: Trellis representation with a maximum number of states

$$\min\{2^{(n_1-k_1)k_2}, 2^{(n_2-k_2)k_1}\}\$$

per trellis section.

- Particularly beneficial when one component code has low dimension (e.g., small k<sub>2</sub>) and one has a small number of parity bits (e.g., small n<sub>1</sub> k<sub>1</sub>).
- Particular case: the high rate code is a single parity-check code (n<sub>1</sub> - k<sub>1</sub> = 1). In this case:

 $2^{k_2}$  states per trellis section.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• Hereafter we focus on this class of product codes. Row code  $C_1$  is SPC, column code  $C_2$  is any linear block code.

Reduced Complexity Decode

 Numerical Result: 00

# Some Notation (1/2)



▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

 Background
 Reduced Complexity Decoder
 Numerical Results
 Conclusion

 000000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0
 00
 0
 0

### Some Notation (2/2)

- Length- $k_2$  vectors  $\mathbf{m}_1^T, \mathbf{m}_2^T, \dots, \mathbf{m}_{n_1}^T$  regarded as the binary vector representations of the elements of finite field  $\mathbb{F}_q$  with  $q = 2^{k_2}$ .
- $[\mu_1, \mu_2, \dots, \mu_{n_1}] := [\mathbf{m}_1^T, \mathbf{m}_2^T, \dots, \mathbf{m}_{n_1}^T]$ ,  $\mu_i \in \mathbb{F}_q$ , thus

$$\mu_1+\mu_2+\cdots+\mu_{n_1}=0$$

• Encoder (equivalent perspective):



| Background<br>000000 | Reduced Complexity Decoder | Numerical Results | Conclusion<br>00 |
|----------------------|----------------------------|-------------------|------------------|
| ML Decoding          |                            |                   |                  |

- SPC code  $C_q$  Viterbi decoded over its trellis.
- The trellis comprises q = 2<sup>k<sub>2</sub></sup> states (apart from terminations). States are of subsequent layers are "fully connected". Example (k<sub>2</sub> = 2):





- Branch metrics  $\langle \mathbf{x}_i, \mathbf{y}_i \rangle$ .
- Label of edge from S<sub>i-1</sub> = s to S<sub>i</sub> = s': s + s' ∈ 𝔽<sub>q</sub>.

• Neglecting terminations, complexity proportional to  $k_1q^2 = k_12^{2k_2}$ .

| Background<br>000000 | Reduced Complexity Decoder | Numerical Results | Conclusion<br>00 |
|----------------------|----------------------------|-------------------|------------------|
| Example              |                            |                   |                  |

- Row code: (8,7) SPC code. Column code: (24,12) Golay code.
- n = 192, k = 84, d = 16,  $A_{\min} = 28 \times 759 = 21252$ .
- Number of states: 2<sup>12</sup>. Number of edges per trellis section: 2<sup>24</sup>.



• Q: Possible to reduce complexity while preserving performance?

Reduced Complexity Decoder

Numerical Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

#### Symbol-Wise MAP Decoding

• To reduce complexity:

Switch to symbol-wise optimum MAP decoding:

$$\hat{\mu}_i = \arg \max_{\omega \in \mathbb{F}_q} \Pr\{\mu_i = \omega | \mathbf{y}\}$$

▷ Use fast Fourier transform.

Using BCJR we have

$$L_i(\omega) := \Pr\{\mu_i = \omega | \mathbf{y}\} = \sum_{s, s': s+s'=\omega} \varphi_{i-1}(s) \gamma_i(s, s') \beta_i(s')$$

with standard meaning for the forward ( $\varphi$ ), backward ( $\beta$ ), and branch transition ( $\gamma$ ) metrics.

| Background | Reduced Complexity Decoder | Numerical Results | Conclusion |
|------------|----------------------------|-------------------|------------|
|            | 000000                     |                   |            |
|            |                            |                   |            |
| Kranch IVI | etric                      |                   |            |

• Defining  $s' = s + \omega$ , the branch transition metric may be computed as

$$\begin{split} \gamma_i(s,s') &\propto (2\pi\sigma^2)^{n_2/2} \exp\left(-\frac{1}{2\sigma^2} \langle \mathbf{y}_i,\mathsf{M}(\omega)\rangle\right) \\ &=: \gamma_i(s+s') \\ &=: \gamma_i(\omega) \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

- An inner product of length- $n_2$  vectors for each  $\omega \in \mathbb{F}_q$ .
- Complexity of branch metric calculation is  $\mathcal{O}(k_1k_22^{k_2})$ .

Reduced Complexity Decoder

Numerical Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

# APP Calculation (1/2)

• As usual we have

$$\varphi_i(s) = \sum_{s'} \varphi_{i-1}(s') \gamma_i(s',s) \quad \text{and} \quad \beta_i(s) = \sum_{s'} \beta_{i+1}(s') \gamma_{i+1}(s,s')$$

Let

$$\begin{split} \boldsymbol{\varphi}_i &= \left(\varphi_i(0), \varphi_i(1), \dots, \varphi_i(\alpha^{q-2})\right) \\ \boldsymbol{\beta}_i &= \left(\beta_i(0), \beta_i(1), \dots, \beta_i(\alpha^{q-2})\right) \\ \boldsymbol{\gamma}_i &= \left(\gamma_i(0), \gamma_i(1), \dots, \gamma_i(\alpha^{q-2})\right) \\ \boldsymbol{\mathsf{L}}_i &= \left(L_i(0), L_i(1), \dots, L_i(\alpha^{q-2})\right) \end{split}$$

then

$$egin{aligned} oldsymbol{arphi}_i &= oldsymbol{arphi}_{i-1} \circledast oldsymbol{\gamma}_i \ oldsymbol{eta}_i &= oldsymbol{eta}_{i+1} \circledast oldsymbol{\gamma}_{i+1} \end{aligned}$$

where  $\circledast$  denotes convolution.

Reduced Complexity Decoder

Numerical Result
 00

Conclusion

## APP Calculation (2/2)

Next

$$L_{i}(\omega) = \sum_{s,s':s+s'=\omega} \varphi_{i-1}(s)\gamma_{i}(s,s')\beta_{i}(s')$$
$$= \gamma_{i}(\omega)\sum_{s} \varphi_{i-1}(s)\beta_{i}(s+\omega)$$

so (· denotes element-wise multiplication)

$$\begin{aligned} \mathbf{L}_{i} &= \boldsymbol{\gamma}_{i} \cdot \left(\boldsymbol{\varphi}_{i-1} \circledast \boldsymbol{\beta}_{i}\right) \\ &= \boldsymbol{\gamma}_{i} \cdot \left( \left( \circledast_{j=1}^{i-1} \boldsymbol{\gamma}_{j} \right) \circledast \left( \circledast_{j=i+1}^{n_{1}} \boldsymbol{\gamma}_{j} \right) \right) \end{aligned}$$

| Background<br>000000 | Reduced Complexity Decoder | Numerical Results | Conclusion<br>00 |
|----------------------|----------------------------|-------------------|------------------|
| Using FFT            |                            |                   |                  |

- To calculate  $L_i$  we have to take the convolution of all vectors  $\gamma_i$  but  $\gamma_i$ .
- In principle complexity of convolution scales as  $\mathcal{O}(q^2)$ .

 $\circ$ 

 However, complexity reduced to O(q log<sub>2</sub> q) by applying fast Fourier transform on finite Abelian groups (in this case equal to Hadamard transform):

$$\mathbf{L}_{i} = \boldsymbol{\gamma}_{i} \cdot \mathcal{H}\left(\left( \bigcup_{j=1}^{i-1} \mathcal{H}(\boldsymbol{\gamma}_{j}) \right) \cdot \left( \bigcup_{j=i+1}^{n_{1}} \mathcal{H}(\boldsymbol{\gamma}_{j}) \right) \right)$$

(日) (同) (三) (三) (三) (○) (○)

• Complexity  $\mathcal{O}(k_1 2^{2k_2})$  under Viterbi decoding is turned into  $\mathcal{O}(k_1 k_2 2^{k_2})$ .

 Background
 Reduced Complexity Decoder
 Numerical Results
 Coil

 000000
 000000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

### Improving Multiplicity of Minimum Weight Codewords

We have

$$d=2d_2$$
 and  $A_{\min}=rac{n_1(n_1-1)}{2}A_{\min,2}$ 

- To preserve  $d = 2d_2$  while reducing  $A_{\min}$ , we replace  $\mathbf{H} = [1 \ 1 \ \cdots \ 1]$  with  $\mathbf{H}' = [\beta_1 \ \beta_2 \ \cdots \ \beta_{n_1}]$  with  $\beta_i \in \mathbb{F}_q \setminus \{0\}$ .
- Upon a uniformly random choice of  $\beta_1, \beta_2, \ldots, \beta_{n_1}$  we expect

$$ar{\mathcal{A}}'_{\mathsf{min}} = rac{n_1(n_1-1)}{2}rac{\mathcal{A}^2_{\mathsf{min},2}}{2^{k_2}-1}$$

$$(n_{1}, n_{1} - 1) \text{ SPC}$$

$$\text{over } \mathbb{F}_{q}$$

$$C_{q}$$

$$H = [\beta_{1} \beta_{2} \cdots \beta_{n_{1}}]$$

$$M : \mu_{i} \in \mathbb{F}_{q} \mapsto \mathbf{x}_{i} = \mathbf{1} - 2\mathbf{c}_{i}$$

| Background<br>000000 | Reduced Complexity Decoder | Numerical Results | Conclusion<br>00 |
|----------------------|----------------------------|-------------------|------------------|
| Numerical Re         | sults                      |                   |                  |

- Consider again the (8,7) SPC  $\times$  (24,12) Golay code.
- Decoded by:
  - The BCJR algorithm to the component code trellises, iterating the soft information exchange (50 iterations max);
  - ▷ The BCJR algorithm, by weighting the soft-output of each component decoder by a factor 1/2 [Pyndiah1998];

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- ▷ The symbol-wise MAP decoder.
- Additionally, we consider a second code (CC) with the same parameters but designed using the  $\mathbf{H}' = [\beta_1 \ \beta_2 \ \cdots \ \beta_{n_1}]$  matrix approach.

Reduced Complexity Decoder

Numerical Results

### Numerical Results



◆□> ◆□> ◆三> ◆三> ・三> のへの

| Background<br>000000 | Reduced Complexity Decoder | Numerical Results | Conclusion<br>• O |  |
|----------------------|----------------------------|-------------------|-------------------|--|
| Conclusion           |                            |                   |                   |  |

- Optimum decoding investigated for product codes given by concatenation of a binary SPC code with a low-dimension binary linear block code.
- Decoding complexity can be reduced further with respect to block-wise ML decoding by approaching the problem as a symbol-wise MAP decoding.
- A generalization of the code construction, enjoying the same low-complexity decoding principle is presented and analyzed, achieving additional coding gains.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

| Background | Reduced Complexity Decoder | Numerical Results | Conclusion |
|------------|----------------------------|-------------------|------------|
|            |                            |                   | 00         |
|            |                            |                   |            |

G. Liva, E. Paolini, M. Chiani, "On optimum decoding of certain product codes," *IEEE Commun. Lett.*, vol. 18, no. 6, pp. 905–908, June 2014.

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ