### Polar-Coded Modulation - A Tutorial -

Mathis Seidl and Johannes B. Huber





Institute for Information Transmission Friedrich-Alexander-Universität Erlangen-Nürnberg

- Coded Modulation by means of Multilevel Coding (MLC)
- Sequential Binary Partitions
- Concatenation of SBPs and Interpretation of Polar Codes as concatenated SBPs
- Concatenation of MLC and Polar Codes forming one Polar Code
- BICM and Polar Codes
- Conclusions





# Multilevel Coding with Multistage Decoding 2/31



Symmetric channel capacity:  $I(X;Y) = I(B_0, ..., B_{m-1};Y) = \sum_{i=0}^{m-1} I(B_i;Y|B_0, ..., B_{i-1}) =: \sum_{i=0}^{m-1} I(\mathsf{B}^{(i)})$ 

with  $I(B^{(i)})$ : *i*-th level / *i*-th (symmetric) binary channel capacity



# Multilevel Coding with Multistage Decoding 2/31



Symmetric channel capacity:  

$$I(X;Y) = I(B_0, ..., B_{m-1};Y) = \sum_{i=0}^{m-1} I(B_i;Y|B_0, ..., B_{i-1}) =: \sum_{i=0}^{m-1} I(\mathsf{B}^{(i)})$$

with  $I(B^{(i)})$ : *i*-th level / *i*-th (symmetric) binary channel capacity

- If rates R<sub>i</sub> of the codes for equivalent binary channels B<sub>i</sub> are chosen to I(B<sub>i</sub>), channel capacity I(X; Y) is achievable by means of capacity-achieving binary codes together with successive decoding
- Although the I(B<sub>i</sub>) strongly depend on the chosen labeling rule L, "capacity achievability" is irrespective of the choice of L

Let  $W : \mathcal{X} \mapsto \mathcal{Y}$  be a discrete, memoryless channel (DMC) with  $|\mathcal{X}| = M = 2^m$  and mutual information I(X; Y).

#### Sequential Binary Partition of order m of W (m-SBP of W):

SBP: Transformation  $\varphi: \mathsf{W} \mapsto \{\mathsf{B}^{(0)}, \dots, \mathsf{B}^{(m-1)}\}$ 

$$B^{(i)} : \{0,1\} \mapsto \mathcal{Y} \times \{0,1\}^i$$
 B-DMC, binary channels 
$$I(B^{(i)}) := I(B_i; Y | B_0, \dots, B_{i-1})$$
 symmetric capacity

such that

$$\sum_{i=0}^{m-1} I(\mathsf{B}^{(i)}) = I(X;Y) \qquad \text{(Information is preserved)}$$

Labeling:  $\mathcal{L}: B_0 \dots B_{m-1} \mapsto X$  ((2<sup>m</sup>)! possibilities)





#### **Properties of** *m***-SBPs:**

average capacity per binary channel:

$$M_{\varphi}(\mathsf{W}) := \frac{1}{m} \sum_{i=0}^{m-1} I(\mathsf{B}^{(i)}) = \frac{1}{m} I(X;Y)$$

- independent of labeling rule

variance of the binary channel capacities:

$$V_{\varphi}(\mathsf{W}) := \frac{1}{m} \sum_{i=0}^{m-1} I(\mathsf{B}^{(i)})^2 - M_{\varphi}(\mathsf{W})^2$$

- strongly depending on labeling rule!

# **Sequential Binary Partition**

Concatenated Channel Coding interpreted as Multilevel Coding:



- In old days of channel coding well known as "generalized concatenated codes"
- For m = N and one-to-one mapping, a simple change of mapping and a transform of identical binary channels V into **differing equivalent channels** B<sup>(i)</sup> (i = 0, ..., N 1) in a capacity-preserving way:

$$\sum_{i=0}^{N-1} I(\mathsf{B}^{(i)}) = N \cdot I(\mathsf{V})$$

with  $I(\mathsf{B}^{(i)}) := I(B_i; \mathbf{Y}|B_0, \dots, B_{i-1}).$ 



- Polar code as a "special" "generalized" concatenated code:
  - Inner encoder:  $N \times N$  binary generator matrix

$$oldsymbol{G}_N = egin{bmatrix} 1 & 0 \ 1 & 1 \end{bmatrix}^{\otimes \log_2(N)} \in \mathbb{F}_2^{N imes N}$$

Outer encoders with rates

$$R_i = \begin{cases} 0 & \text{for frozen} \\ 1 & \text{for used} \end{cases} \text{ symbols}$$

- Polar-Coded Modulation:
  - Inner encoder: Labeling of coded modulation
  - Outer encoders: Polar codes with rates  $R_i \leq I(B^{(i)})$

Concatenation of two SBPs:

• 
$$\varphi_1$$
:  $\mathsf{W} \mapsto \{\mathsf{B}_1^{(0)}, \dots, \mathsf{B}_1^{(k_1-1)}\}$ 

• 
$$\varphi_2$$
:  $\mathsf{B}^{k_2} \mapsto \{\mathsf{B}_2^{(0)}, \dots, \mathsf{B}_2^{(k_2-1)}\}$ 

(Vector channel of  $k_2$  B-DMCs B as input)





#### Concatenation of two SBPs:

• 
$$\varphi_1$$
:  $W \mapsto \{B_1^{(0)}, \dots, B_1^{(k_1-1)}\}$ 

• 
$$\varphi_2$$
:  $\mathsf{B}^{k_2} \mapsto \{\mathsf{B}_2^{(0)}, \dots, \mathsf{B}_2^{(k_2-1)}\}$  (Vector channel of  $k_2$  B-DMCs B as input)

Concatenation is again an SBP (of order  $k_1k_2$ ):

$$\varphi_1 \circ \varphi_2 : \mathsf{W}^{k_2} \mapsto \{\mathsf{B}^{(0,0)}, \dots, \mathsf{B}^{(0,k_2-1)}, \dots, \mathsf{B}^{(k_1-1,0)}, \dots, \mathsf{B}^{(k_1-1,k_2-1)}\}$$

$$B^{(i,j)} : \{0,1\} \mapsto \mathcal{Y}^{k_2} \times \{0,1\}^{k_2i+j}$$
B-DMC, binary channels  
$$I(B^{(i,j)}) := I(B_{i,j}; \mathbf{Y} | \mathbf{B}_0 \dots \mathbf{B}_{i-1}, B_{i,0}, \dots, B_{i,j-1})$$

Linear indexing:  $(i, j) \mapsto (k_2 i + j)$ 



#### Concatenation of two SBPs:

• 
$$\varphi_1$$
:  $\mathsf{W} \mapsto \{\mathsf{B}_1^{(0)}, \dots, \mathsf{B}_1^{(k_1-1)}\}$ 

• 
$$\varphi_2$$
:  $\mathsf{B}^{k_2} \mapsto \{\mathsf{B}_2^{(0)}, \dots, \mathsf{B}_2^{(k_2-1)}\}$  (Vector channel of  $k_2$  B-DMCs B as input)

Concatenation is again an SBP (of order  $k_1k_2$ ):

$$\varphi_1 \circ \varphi_2 : \mathsf{W}^{k_2} \mapsto \{\mathsf{B}^{(0,0)}, \dots, \mathsf{B}^{(0,k_2-1)}, \dots, \mathsf{B}^{(k_1-1,0)}, \dots, \mathsf{B}^{(k_1-1,k_2-1)}\}$$

$$B^{(i,j)}: \{0,1\} \mapsto \mathcal{Y}^{k_2} \times \{0,1\}^{k_2i+j}$$
B-DMC, binary channels  
$$I(B^{(i,j)}) := I(B_{i,j}; \mathbf{Y} | \mathbf{B}_0 \dots \mathbf{B}_{i-1}, B_{i,0}, \dots, B_{i,j-1})$$

Linear indexing:  $(i, j) \mapsto (k_2 i + j)$ 

average capacity per binary channel does not change:

$$M_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = M_{\varphi_1}(\mathsf{W}) = \frac{1}{k_1} I(X;Y)$$

Theorem 1: variance increases:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = V_{\varphi_1}(\mathsf{W}) + \frac{1}{k_1} \sum_{i=0}^{k_1-1} V_{\varphi_2}(\mathsf{B}_1^{(i)})$$



Theorem 1: variance increases:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = V_{\varphi_1}(\mathsf{W}) + \frac{1}{k_1} \sum_{i=0}^{k_1-1} V_{\varphi_2}(\mathsf{B}_1^{(i)})$$

**Proof:** By definition:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1 k_2} \sum_{i=0}^{k_1 - 1} \sum_{j=0}^{k_2 - 1} I(\mathsf{B}^{(i,j)})^2 - M_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2})^2$$



Theorem 1: variance increases:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = V_{\varphi_1}(\mathsf{W}) + \frac{1}{k_1} \sum_{i=0}^{k_1-1} V_{\varphi_2}(\mathsf{B}_1^{(i)})$$

Proof: By definition:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1 k_2} \sum_{i=0}^{k_1 - 1} \sum_{j=0}^{k_2 - 1} I(\mathsf{B}^{(i,j)})^2 - M_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2})^2$$

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1} \sum_{i=0}^{k_1-1} I(\mathsf{B}_1^{(i)})^2 - M_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2})^2 + \frac{1}{k_1 k_2} \sum_{i=0}^{k_1-1} \sum_{j=0}^{k_2-1} I(\mathsf{B}^{(i,j)})^2 - \frac{1}{k_1} \sum_{i=0}^{k_1-1} I(\mathsf{B}_1^{(i)})^2$$



Theorem 1: variance increases:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = V_{\varphi_1}(\mathsf{W}) + \frac{1}{k_1} \sum_{i=0}^{k_1-1} V_{\varphi_2}(\mathsf{B}_1^{(i)})$$

Proof: By definition:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1 k_2} \sum_{i=0}^{k_1 - 1} \sum_{j=0}^{k_2 - 1} I(\mathsf{B}^{(i,j)})^2 - M_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2})^2$$

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1} \sum_{i=0}^{k_1-1} I(\mathsf{B}_1^{(i)})^2 - M_{\varphi_1}(\mathsf{W})^2 + \frac{1}{k_1 k_2} \sum_{i=0}^{k_1-1} \sum_{j=0}^{k_2-1} I(\mathsf{B}^{(i,j)})^2 - \frac{1}{k_1} \sum_{i=0}^{k_1-1} I(\mathsf{B}_1^{(i)})^2$$



Theorem 1: variance increases:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = V_{\varphi_1}(\mathsf{W}) + \frac{1}{k_1} \sum_{i=0}^{k_1-1} V_{\varphi_2}(\mathsf{B}_1^{(i)})$$

Proof: By definition:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1 k_2} \sum_{i=0}^{k_1 - 1} \sum_{j=0}^{k_2 - 1} I(\mathsf{B}^{(i,j)})^2 - M_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2})^2$$

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1} \sum_{i=0}^{k_1-1} I(\mathsf{B}_1^{(i)})^2 - M_{\varphi_1}(\mathsf{W})^2 + \frac{1}{k_1 k_2} \sum_{i=0}^{k_1-1} \sum_{j=0}^{k_2-1} I(\mathsf{B}^{(i,j)})^2 - \frac{1}{k_1} \sum_{i=0}^{k_1-1} I(\mathsf{B}_1^{(i)})^2$$



Theorem 1: variance increases:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = V_{\varphi_1}(\mathsf{W}) + \frac{1}{k_1} \sum_{i=0}^{k_1-1} V_{\varphi_2}(\mathsf{B}_1^{(i)})$$

Proof: By definition:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1 k_2} \sum_{i=0}^{k_1 - 1} \sum_{j=0}^{k_2 - 1} I(\mathsf{B}^{(i,j)})^2 - M_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2})^2$$

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1} \sum_{i=0}^{k_1-1} I(\mathsf{B}_1^{(i)})^2 - M_{\varphi_1}(\mathsf{W})^2 + \frac{1}{k_1} \sum_{i=0}^{k_1-1} \left(\frac{1}{k_2} \sum_{j=0}^{k_2-1} I(\mathsf{B}^{(i,j)})^2 - I(\mathsf{B}^{(i)}_1)^2\right)$$



Theorem 1: variance increases:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = V_{\varphi_1}(\mathsf{W}) + \frac{1}{k_1} \sum_{i=0}^{k_1-1} V_{\varphi_2}(\mathsf{B}_1^{(i)})$$

Proof: By definition:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1 k_2} \sum_{i=0}^{k_1 - 1} \sum_{j=0}^{k_2 - 1} I(\mathsf{B}^{(i,j)})^2 - M_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2})^2$$

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1} \sum_{i=0}^{k_1-1} I(\mathsf{B}_1^{(i)})^2 - M_{\varphi_1}(\mathsf{W})^2 + \frac{1}{k_1} \sum_{i=0}^{k_1-1} \left(\frac{1}{k_2} \sum_{j=0}^{k_2-1} I(\mathsf{B}^{(i,j)})^2 - M_{\varphi_2}(\mathsf{B}_1^{(i)})^2\right)$$



Theorem 1: variance increases:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = V_{\varphi_1}(\mathsf{W}) + \frac{1}{k_1} \sum_{i=0}^{k_1 - 1} V_{\varphi_2}(\mathsf{B}_1^{(i)})$$

Proof: By definition:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1 k_2} \sum_{i=0}^{k_1 - 1} \sum_{j=0}^{k_2 - 1} I(\mathsf{B}^{(i,j)})^2 - M_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2})^2$$

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1} \sum_{i=0}^{k_1-1} I(\mathsf{B}_1^{(i)})^2 - M_{\varphi_1}(\mathsf{W})^2 + \frac{1}{k_1} \sum_{i=0}^{k_1-1} \left(\frac{1}{k_2} \sum_{j=0}^{k_2-1} I(\mathsf{B}^{(i,j)})^2 - M_{\varphi_2}(\mathsf{B}_1^{(i)})^2\right)$$



Theorem 1: variance increases:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = V_{\varphi_1}(\mathsf{W}) + \frac{1}{k_1} \sum_{i=0}^{k_1 - 1} V_{\varphi_2}(\mathsf{B}_1^{(i)})$$

Proof: By definition:

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1 k_2} \sum_{i=0}^{k_1 - 1} \sum_{j=0}^{k_2 - 1} I(\mathsf{B}^{(i,j)})^2 - M_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2})^2$$

Adding and subtracting the term  $\frac{1}{k_1} \sum_{i=0}^{k_1-1} I(\mathsf{B}_1^{(i)})^2$ :

$$V_{\varphi_1 \circ \varphi_2}(\mathsf{W}^{k_2}) = \frac{1}{k_1} \sum_{i=0}^{k_1-1} I(\mathsf{B}_1^{(i)})^2 - M_{\varphi_1}(\mathsf{W})^2 + \frac{1}{k_1} \sum_{i=0}^{k_1-1} \left(\frac{1}{k_2} \sum_{j=0}^{k_2-1} I(\mathsf{B}^{(i,j)})^2 - M_{\varphi_2}(\mathsf{B}_1^{(i)})^2\right)$$

q.e.d.

#### **Examples of SBPs:**

- *M*-ary transmission ( $M = 2^m$ ) with binary labeling: *m*-SBP  $\varphi$
- Arıkan's polarizing construction: 2-SBP  $\pi$ :





# **Polar Code as SBP**

Subsequent binary bipolar PAM signalling using orthogonal pulses, i.e.,

# **Polar Code as SBP**

Subsequent binary bipolar PAM signalling using orthogonal pulses, i.e.,





# **Polar Code as SBP**

Subsequent binary bipolar PAM signalling using orthogonal pulses, i.e.,



 $\Rightarrow$  2-SBP  $\pi$ : Transform of mapping from "Gray" to "Set Partitioning"



Set Partitioning of





Set Partitioning of



Decision Regions:



loss to BPSK due to **2** nearest neighbours



3 dB gain to BPSK



Set Partitioning of



Decision Regions:



loss to BPSK due to **2** nearest neighbours



3 dB gain to BPSK

■ length-*N* Polar Code: A special "Anti-Gray" mapping for the vertices of a hypercube in  $\mathbb{R}^N$ , a method of **Coded Modulation** 











Seidl, Huber: Polar-Coded Modulation









12/31











#### **Polar Codes as SBPs**



#### **Polar Codes as SBPs**



# Concatenation of $\pi$

• *n*-fold concatenation of  $\pi$  leads to *N*-SBP  $\pi^n$  ( $N = 2^n$ )

$$\pi^n: \mathsf{B}^N \mapsto \{\mathsf{B}_N^{(0)}, \dots, \mathsf{B}_N^{(N-1)}\}$$

with binary channels

$$B_N^{(i)} : \{0,1\} \to \mathcal{Y}^N \times \{0,1\}^i \quad , \quad i = 0, \dots, N-1$$
$$I(B_N^{(i)}) := I(B_i; Y_0, \dots, Y_{N-1} | B_0, \dots, B_{i-1})$$

The chain rule of mutual information assures

$$\sum_{i=0}^{N-1} I(\mathsf{B}_{N}^{(i)}) = N \cdot I(\mathsf{B}) = N \cdot M_{\pi^{n}}(\mathsf{B})$$

capacity-preserving change of mapping



$$V_{\pi^n}(\mathsf{B}) = \frac{1}{N} \sum_{i=0}^{N-1} I(\mathsf{B}_N^{(i)})^2 - I(\mathsf{B})^2$$



$$V_{\pi^n}(\mathsf{B}) = \frac{1}{N} \sum_{i=0}^{N-1} I(\mathsf{B}_N^{(i)})^2 - I(\mathsf{B})^2$$

maximum possible variance corresponds to state of perfect polarization:

$$V_{\pi^n}(\mathsf{B}) \le I(\mathsf{B}) \cdot (1 - I(\mathsf{B}))$$

with equality iff  $I(\mathsf{B}_N^{(i)}) \in \{0,1\} \quad \forall i$ 



15/31

w

$$V_{\pi^n}(\mathsf{B}) = \frac{1}{N} \sum_{i=0}^{N-1} I(\mathsf{B}_N^{(i)})^2 - I(\mathsf{B})^2$$

maximum possible variance corresponds to state of perfect polarization:

$$V_{\pi^n}(\mathsf{B}) \leq I(\mathsf{B}) \cdot (1-I(\mathsf{B}))$$
 ith equality iff  $I(\mathsf{B}_N^{(i)}) \in \{0,1\} \quad \forall i$ 

Proof:  

$$V_{\pi^{n}}(\mathsf{B}) = \frac{1}{N} \sum_{i=0}^{N-1} I(\mathsf{B}_{N}^{(i)})^{2} - I(\mathsf{B})^{2}$$

$$\leq \frac{1}{N} \sum_{i=0}^{N-1} I(\mathsf{B}_{N}^{(i)})^{1} - I(\mathsf{B})^{2} = I(\mathsf{B}) \cdot (1 - I(\mathsf{B}))$$



$$V_{\pi^n}(\mathsf{B}) = \frac{1}{N} \sum_{i=0}^{N-1} I(\mathsf{B}_N^{(i)})^2 - I(\mathsf{B})^2$$

- maximum possible variance corresponds to state of perfect polarization:  $V_{\pi^n}(\mathsf{B}) \leq I(\mathsf{B}) \cdot (1 - I(\mathsf{B}))$ with equality iff  $I(\mathsf{B}_N^{(i)}) \in \{0,1\} \quad \forall i$
- $V_{\pi^n}(\mathsf{B})$  increases with each step of polarization (Theorem 1):

$$V_{\pi^{n+1}}(\mathsf{B}) = V_{\pi^n}(\mathsf{B}) + \frac{1}{N} \sum_{i=0}^{N-1} V_{\pi}(\mathsf{B}_N^{(i)})$$



$$V_{\pi^n}(\mathsf{B}) = \frac{1}{N} \sum_{i=0}^{N-1} I(\mathsf{B}_N^{(i)})^2 - I(\mathsf{B})^2$$

- maximum possible variance corresponds to state of perfect polarization:  $V_{\pi^n}(\mathsf{B}) \leq I(\mathsf{B}) \cdot (1 - I(\mathsf{B}))$ with equality iff  $I(\mathsf{B}_N^{(i)}) \in \{0, 1\} \quad \forall i$
- $V_{\pi^n}(\mathsf{B})$  increases with each step of polarization (Theorem 1):

$$V_{\pi^{n+1}}(\mathsf{B}) = V_{\pi^n}(\mathsf{B}) + \frac{1}{N} \sum_{i=0}^{N-1} V_{\pi}(\mathsf{B}_N^{(i)})$$

Byproduct: a simple proof of capacity-achieving property of Polar Codes



$$V_{\pi^n}(\mathsf{B}) = \frac{1}{N} \sum_{i=0}^{N-1} I(\mathsf{B}_N^{(i)})^2 - I(\mathsf{B})^2$$

- maximum possible variance corresponds to state of perfect polarization:  $V_{\pi^n}(\mathsf{B}) \leq I(\mathsf{B}) \cdot (1 - I(\mathsf{B}))$ with equality iff  $I(\mathsf{B}_N^{(i)}) \in \{0,1\} \quad \forall i$
- $V_{\pi^n}(B)$  increases with each step of polarization (Theorem 1):

$$V_{\pi^{n+1}}(\mathsf{B}) = V_{\pi^n}(\mathsf{B}) + \frac{1}{N} \sum_{i=0}^{N-1} V_{\pi}(\mathsf{B}_N^{(i)})$$

 $\Rightarrow$  The sequence  $V_{\pi^n}(\mathsf{B})$  converges for  $n \to \infty$ , which implies

$$\lim_{n \to \infty} \left( V_{\pi^{n+1}}(\mathsf{B}) - V_{\pi^n}(\mathsf{B}) \right) = \lim_{n \to \infty} \frac{1}{2^n} \sum_{i=0}^{2^n - 1} V_{\pi}(\mathsf{B}_N^{(i)}) = 0$$



# **Polarization and Variance**

$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{i=0}^{2^n - 1} V_{\pi}(\mathsf{B}_N^{(i)}) = 0$$



$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{i=0}^{2^n - 1} V_{\pi}(\mathsf{B}_N^{(i)}) = 0$$

•  $V_{\pi}(\mathsf{B}_{N}^{(i)}) = 0$  only possible if  $I(\mathsf{B}_{N}^{(i)})$  is either 0 or 1, because serial and parallel information combining for two identical channels has to result in two identical channels which only is possible for input MI either I = 0 or I = 1 (bounds on information combining!)



16/31

$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{i=0}^{2^n - 1} V_{\pi}(\mathsf{B}_N^{(i)}) = 0$$

- $V_{\pi}(\mathsf{B}_{N}^{(i)}) = 0$  only possible if  $I(\mathsf{B}_{N}^{(i)})$  is either 0 or 1
- ⇒ for  $n \to \infty$  and  $\epsilon > 0$ , the fraction of binary channels  $\mathsf{B}_N^{(i)}$  with capacity  $I(\mathsf{B}_N^{(i)}) \in [\epsilon, 1 \epsilon]$  has to vanish



16/31

$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{i=0}^{2^n - 1} V_{\pi}(\mathsf{B}_N^{(i)}) = 0$$

- $V_{\pi}(\mathsf{B}_N^{(i)}) = 0$  only possible if  $I(\mathsf{B}_N^{(i)})$  is either 0 or 1
- ⇒ for  $n \to \infty$  and  $\epsilon > 0$ , the fraction of binary channels  $\mathsf{B}_N^{(i)}$  with capacity  $I(\mathsf{B}_N^{(i)}) \in [\epsilon, 1 \epsilon]$  has to vanish
- $\Rightarrow$  convergence to state of perfect polarization:

$$\lim_{n \to \infty} V_{\pi^n}(\mathsf{B}) = I(\mathsf{B}) \cdot (1 - I(\mathsf{B}))$$

and all transforms capacity-preserving



$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{i=0}^{2^n - 1} V_{\pi}(\mathsf{B}_N^{(i)}) = 0$$

- $V_{\pi}(\mathsf{B}_N^{(i)}) = 0$  only possible if  $I(\mathsf{B}_N^{(i)})$  is either 0 or 1
- ⇒ for  $n \to \infty$  and  $\epsilon > 0$ , the fraction of binary channels  $\mathsf{B}_N^{(i)}$  with capacity  $I(\mathsf{B}_N^{(i)}) \in [\epsilon, 1 \epsilon]$  has to vanish
- $\Rightarrow$  convergence to state of perfect polarization:

$$\lim_{n \to \infty} V_{\pi^n}(\mathsf{B}) = I(\mathsf{B}) \cdot (1 - I(\mathsf{B}))$$

and all transforms capacity-preserving

 $\Rightarrow$  capacity-achieving property of polar codes for symmetric binary channels



# Variance for Binary Polar Codes

0.25 0.2 Legend: 0.15  $V_{\pi^n}(\mathsf{B})$ BEC - – BSC 0.1 – – BI-AWGN 0.05 ٥ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 í٥ 0.8  $I(\mathsf{B}) = M_{\pi^n}(\mathsf{B})$ 

Polar Codes: variance of binary channel capacities  $N = 2^n$ , n = 1, 2, 4, 8, 12, 20

#### 17/31

### Multilevel Polar Coding

#### Variance for MLC with Polar Codes:

$$V_{\varphi \circ \pi^n}(\mathsf{W}) = V_{\varphi}(\mathsf{W}) + \frac{1}{m} \sum_{i=0}^{m-1} V_{\pi^n}(\mathsf{B}^{(i)})$$

- Variance  $V_{\varphi}(W)$  of binary capacities  $I(B^{(i)})$  influences overall polarization
- $\Rightarrow$  choose labeling that maximizes  $V_{\varphi \circ \pi^n}(\mathsf{W})$ 
  - Theorem 2: MLC with Polar Codes as component codes results again in a Polar Code
     Proof: concatenation of SBPs: φ ∘ π<sup>n</sup>



### **Example: Variance ASK binary capacities**



- Ungerboeck labeling,

19/31

### **Example: Variance ASK binary capacities**



19/31

Seidl, Huber: Polar-Coded Modulation

### **Example: Variance ASK binary capacities**



19/31

Multilevel Polar Code, length mN





Only SC (Successive Cancellation) Decoding considered

#### **Performance Analysis:**

- Density Evolution (DE) with Gaussian Approximation (solid lines )
- Full Simulation



### Accuracy of Gaussian DE (ASK)



#### Legend:

- Overall Blocklength: mN = 512
- – Shannon bound (real constellations)
- Const. constrained capacity
- DE MLC-MSD, SP
- – DE MLC-MSD, Gray
- \* \* Simulation





#### Legend:

- Overall Blocklength:  $mN = 2^9, 2^{11}, 2^{13}, 2^{15}$ 
  - – Shannon bound (real constellations)
- Const. constrained capacity
- DE MLC-MSD, SP
- – DE MLC-MSD, Gray



Seidl, Huber: Polar-Coded Modulation

#### **Comparison: Polar Codes - LDPC**



#### Legend:

- Overall Blocklength:
   65.536 (Polar Code)
   64.800 (LDPC + BCH)
- Shannon bound
- Const. constrained capacity
- DE MLC-MSD, SP
   4-QAM, 16-QAM, 256-QAM
- \* DVB-T2 LDPC + BCH

4-QAM, 16-QAM, 256-QAM



24/31

### **Bit-Interleaved Polar-Coded Modulation**

BICM with Parallel Decoding over M-ary constellation

- Gray labeling
- no interleaver considered here
- polar code of length mN ( $m = \log_2(M)$ )





# **Performance: BICM**



#### Legend:

- Overall Blocklength:  $mN = 2^9, 2^{14}$  $N = 2^7, 2^{12}$
- – Shannon bound (real constellations)
- Const. constrained capacity
- – BICM capacity
- DE MLC-MSD, SP
- DE BICM, Gray
- \* Simulation





• *M*-ASK / PSK constellations [Alvarado et al., 2012]:

 $\mathbf{M}_{\mathrm{SP}}\cdot\mathbf{T}_{\mathit{m}}=\mathbf{M}_{\mathrm{Gray}}$ 



• *M*-ASK / PSK constellations [Alvarado et al., 2012]:

$$\mathbf{M}_{\rm SP} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix} , \quad \mathbf{M}_{\rm Gray} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$
$$\mathbf{T}_m = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 1 \end{bmatrix}$$

 $\mathbf{M}_{\mathrm{SP}} \cdot \mathbf{T}_m = \mathbf{M}_{\mathrm{Grav}}$ 

• *M*-ASK / PSK constellations [Alvarado et al., 2012]:

 $\mathbf{M}_{\mathrm{SP}}\cdot\mathbf{T}_{\mathit{m}}=\mathbf{M}_{\mathrm{Gray}}$ 

• quadratic  $M^2$ -QAM:  $\mathbf{M}_{SP} \cdot (\mathbf{G}_2 \otimes \mathbf{T}_m) = \mathbf{M}_{Gray}$ 

BICM with Parallel Decoding over M-ary constellation, modified polar code

- identical encoder like in the MLC approach
- quasi-identical decoder
- performance loss due to Parallel Decoding





BICM Polar Code, length mN





#### **Comparison: MLC - BICM**



#### Legend:

- Overall Blocklength:  $mN = 2^9, 2^{14}$
- - Shannon bound (real constellations)
- Const. constrained capacity
- – BICM capacity
- DE MLC-MSD, SP
- DE BICM, Gray
- DF BICM н. mod. Polar Code
- Simulation \* \*



#### **Comparison: MLC - BICM**



#### Legend:

- Overall Blocklength:  $mN = 2^9, 2^{14}$
- – Shannon bound (real constellations)
- Const. constrained capacity
- – BICM capacity
- DE MLC-MSD, SP
- DE BICM, Gray
- DE BICM mod. Polar Code
- \*, \* Simulation



- Unified description of both Polar Coding and Multilevel Coding
- Polar Coding is a sort of Coded Modulation: Transform of natural "Gray" mapping for the vertices of an *N*-dimensional hypercube for orthogonal channel uses into an "Anti-Gray" mapping
- MLC/Polar may be seen as one single succ. decoded Polar Code
- MLC/Polar: Ungerboeck labeling should be used
- BICM/Polar (no interleaver!) behaves like a degraded version of MLC/Polar
- Easy to analyze via DE (with Gaussian approximation)



# Thank you for your attention!