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Background

m Diversity techniques offer an effective countermeasure against fading by providing
different versions of the sources’ data.

m Cooperation has been proposed to provide diversity gain, called cooperative
diversity (relay channel, user cooperation, virtual MIMO)

m Coded Cooperation: joint network and channel coding (using, e.g., Turbo/LDPC
codes) can provide both coding gain and diversity gain.

m With shaping and lattice decoding, lattice codes can approach Poltyrev's capacity,
and can also approach the AWGN capacity at any SNR [Erez and Zamir, 04].

m Low density lattice codes (LDLCs) were introduced in [Sommer et al., 08], where
it was shown that LDLCs can perform close to AWGN capacity with low decoding
complexity.

m Lattice codes also naturally support higher-order modulation as well as signal

shaping.
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Background

m Recently, lattice codes have been considered for use in networks with relays:

Classical relay channel: [Ferdinand et al. '14]

m Two-way relay channel (TWRC): [Baik et al. '08], [Wilson et al. '10], [Song et
al. '13]

m Multiple access relay channel (MARC): [Song Devroye '13]
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Background

m Recently, lattice codes have been considered for use in networks with relays:

Classical relay channel: [Ferdinand et al. '14]

m Two-way relay channel (TWRC): [Baik et al. '08], [Wilson et al. '10], [Song et
al. '13]

m Multiple access relay channel (MARC): [Song Devroye '13]

m Question: Can lattice codes be used for joint network-channel coding in the

MARC?

m Can we do this with low-complexity joint iterative decoding at the destination?
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Scope of Presented Work

m Propose a scheme for LDLC cooperative transmission in Multiple Access Relay

Channel (MARC) uplink.
m We focus on LDLCs and higher-order (L-ary PAM) modulation.

m Contrast with most existing work on coded cooperation and joint channel-network

coding focuses on LDPC and turbo codes
m Present two relaying methods, one having lower decoding complexity and one
having a greater power efficiency.
m Propose an efficient joint iterative channel-network decoding algorithm.
m Present a soft symbol relaying technique to mitigate decoding error propagation

from the relay.
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Transmission Protocol

Three-Phase Transmission Model

———————  Phase 1 transmits x';

———————>  Phase 2 transmits x'5

Phase 3 transmits f(%,.%,)

m Consider a Multiple Access Relay Channel (MARC) where Users (Sources) S; and
S, each have their own information packets to transmit to the same destination
via a shared relay.

m The relay node decodes and forwards a combination message to the destination.

m Three transmission phases (half duplex relay).
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m Messages: Integer (L-ary PAM) information vectors: each source S; wishes to
transmit b; € {0,1,2,...,L —1}"

m Encoding without shaping: Form the LDLC codeword x; = Gb;, which lies in the
lattice A (G = generator matrix)

m Encoding with hypercube shaping: Map each integer information vector b; to
another integer vector bl = b; — La, where a € Z"
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Transmission Protocol

Three-Phase Transmission Model

.\

f(x.,xl)

———>  Phase 1transmits x';
38 ——————  Phase 2 transmits x',

SZ ——————>  Phase 3 transmits f(%.%,)

m Messages: Integer (L-ary PAM) information vectors: each source S; wishes to
transmit b; € {0,1,2,...,L —1}"

m Encoding without shaping: Form the LDLC codeword x; = Gb;, which lies in the
lattice A (G = generator matrix)

m Encoding with hypercube shaping: Map each integer information vector b; to
another integer vector bl = b; — La, where a € Z"

m Form LDLC codeword x§ = Gb?, which lies in A; use the lower-triangular
parity-check matrix to encode via b} = Hx!
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Transmission Protocol

Three-Phase Transmission Model

——————  Phase 1 transmits x',
——————>  Phase 2 transmits x’,

—————————> Phase 3 transmits f(%.%,)

First two phases (i = 1,2):

R _ Ry’ | R
yi' = VPiaixi +ni

D Dyr |, D
yii = VPiaix; +n;,
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Transmission Protocol

Three-Phase Transmission Model

———————  Phase 1 transmits x',
——————>  Phase 2 transmits x,

~—————————>  Phase 3 transmits f(%.%,)

Decoding at relay:

yr

oc? P’

x; = LDLCdecoder
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Transmission Protocol

m Superposition LDLC (S-LDLC): In this method, the relay simply adds the lattice
codewords to form
x5 = %1 + %2
which is equivalent to addition of the underlying information vectors, since

Xé:f(1+ﬁ2:G-(Bl+B2)
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Transmission Protocol

m Superposition LDLC (S-LDLC): In this method, the relay simply adds the lattice
codewords to form
x5 = %1 + %2
which is equivalent to addition of the underlying information vectors, since

Xg:f(1+ﬁ2:G-(Bl+B2)

= Modulo-Addition LDLC (MA-LDLC): In this method, in order to improve the
power efficiency of the relay, the LDLC codeword is generated via

x5 = G- bj

where R R
bé =b; +by — La

and hypercube shaping is used to choose the integer vector a.
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Transmission Protocol

m Superposition LDLC (S-LDLC): In this method, the relay simply adds the lattice
codewords to form
x5 = %1 + %2
which is equivalent to addition of the underlying information vectors, since

Xg:f(1+ﬁ2:G-(Bl+B2)

= Modulo-Addition LDLC (MA-LDLC): In this method, in order to improve the
power efficiency of the relay, the LDLC codeword is generated via

x5 = G- bj
where
bé =b; +by — La
and hypercube shaping is used to choose the integer vector a.

MA-LDLC provides better power efficiency, but requires more complex decoding at the
destination.
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Transmission Protocol

Three-Phase Transmission Model

———————  Phase 1 transmits x',
—————>  Phase 2 transmits x'

———————>  Phase 3 transmits f(%,.x,)

The lattice point xg, which can be considered as a network coded component, will be
transmitted from the relay to the destination, i.e.,

D D/ D
y3 =V P3azgxz +n3
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Transmission Protocol

Three-Phase Transmission Model

———————  Phase 1 transmits x',
—————>  Phase 2 transmits x'

———————>  Phase 3 transmits f(%,.x,)

The lattice point xg, which can be considered as a network coded component, will be
transmitted from the relay to the destination, i.e.,

D D/ D
y3 =V P3azgxz +n3

Finally, the destination uses the signals le, yg and y? to jointly decode by and bs.

Mark F. Flanagan and Bin Chen School of EECE, University College Dublin, Ireland




Transmission Protocol

Three-Phase Transmission Model

—————  Phase 1 transmits x',
——————>  Phase 2 transmits x,

—————————> Phase 3 transmits f(%,.%,)

m Key problem: how to efficiently recover the information symbols at the

destination based on the signals received.

m Therefore, we next focus on the joint iterative decoding structure.
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Decoder Structure

b;=Hx;mod L

Make
v decision
LDLC R¢
Decoder - 3(x)
R )(x)
R%(x)
RY)(x)
Iterative LDLC b
Decod
Decoder ecoder Y3
R"z(x
LDLC -
Decoder R'5(x)
[ Make | by=Hx; mod L
decision

m At destination, the LDLC decoders receive three packets from three independent
channels.
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Decoder Structure

’W‘ b1=HX1 ]’l‘lOd L

Vi D decision
- LDLC R®
Decoder 3(X)
R*(x)
R%(x)
RY(x)
Iterative LDLC b
Decoder Decoder ys
RYy(
D LDLC s
Y2 T pecoder *‘ R%(x)
’W‘ b2=Hx2 ]’l‘lOd L
decision

m Inner iterations: Each LDLC decoder performs M inner iterations.
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Decoder Structure

b,=Hx; mod L
Make 1 1
decision

K
% R%(x)

LDLC
Decoder

A\

R°i(x) %

RY(x)
Iterative LDLC b
Decoder Decoder ys
RYy(
LDLC -
Decoder R%(x)
’W‘ b2=Hx2 ]’l‘lOd L

decision

m QOuter iteration: After every M inner iterations of LDLC decoding, the network
coding nodes implement one outer iteration to exchange extrinsic information
between the LDLC decoders.
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Decoder Structure

Nake b;=Hx;mod L
Vi decision
R%(x)

R%(x)

RY(x)
Iterative LDLC b
Decoder Decoder ys

Raz

LDLC s
Decoder R%(x)
’W‘ b2=Hx2 ]’l‘lOd L
decision

m Outer iteration: The extrinsic information R?(x) will be considered as a priori
information for each decoder in the next iteration.
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Decoder Structure

LDLC

Decoder Rc3(x)
R%(x)
RY(x)
Iterative LDLC b
Decoder Decoder ys
RY(
LDLC s
Decoder R*(x)
Nake b,=Hx,mod L

decision

= Final decision: After several inner and outer iterations, the final variable node
messages are calculated to make decisions for information symbol vector b;.

Mark F. Flanagan and Bin Chen
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Joint Decoding Algorithm

Factor graph

Clwr Cin

Check nodes

Variable nodes

nodes

¥ Variable nodes

Check nodes

Ciw2  Cini Can
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Check nodes

Variable nodes

D_yguD D D
=W s dind

(EmCIETINE

Check nodes

m Decoder i: Initially each variable node x; x sends the message
2
_ (P vFiePx)
fikj(x)= —2—e No to each neighboring check node ¢; ;

v/ 7™Ng
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Check nodes

CJnel Jns[ Jn,  Network Coding nodes

m Inner iterations: each LDLC decoder performs M inner iterations.

Check-to-variable messages

Variable-to-check messages
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Joint Decoding Algorithm

Check node message at decoder i: each check node c; ; sends a PDF function
Qi j,k(x) to each of its neighboring variable nodes x; .

a. Convolution step: All messages, except f; x j(x), are convolved (after expansion of
each f; ; j(x) by the factor h;)):

~ X
pijk(x) = ® filj (T)
IEA; s

1K
where the set A; denotes the set of indices / for which h; ; # 0.

b. Stretching step:
pij.k(x) = Pijk(—=hjkx)

c. Periodic extension step: extend with period 1/|h; 4|

Qijk(x) = ZPi,j,k (X - hi)

acZ uk
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Decoding Algorithm

Variable node message at decoder /: each variable node x; x sends a message f; x j(x)
to each of its neighboring check nodes ¢; ;.

a. Variable node update rule:

N 0P =v/Piafx)?

fikj(x)=e Mo R () TT Qi)
€8
1#j

where the set B denotes the set of indices / for which h; , # 0.
b. Normalization step: B
fi ki (X)

fikj(x) = —/4/—F"——"—
R P
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Check nodes

m Outer iteration: After M inner iterations, each variable node x; x will send the
extrinsic message Rf, (x) to the corresponding network coding node ny :

P —VPiaPx)?

fx)=e No 1T Qwx)

1€By
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Joint Decoding Algorithm

Check nodes

1, Network Coding nodes

Yin Variable nodes

S-LDLC:

convolution

® - R?f,k(x,)
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Joint Decoding Algorithm

Check nodes

Variable nodes

MA-LDLC:

convolution

® extension R;k(b,) N R;,((Xl)
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Joint Decoding Algorithm

Details: MA-LDLC

According to the relationship between b’ = Hx!, we can calculate the
corresponding extrinsic PDFs of b} by convolution:

X/
70 - @ &t ()
N

re Ay
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Joint Decoding Algorithm

Details: MA-LDLC

According to the relationship between b’ = Hx!, we can calculate the
corresponding extrinsic PDFs of b} by convolution:

X/
(0= QR ()
I,r

re Ay

According to the modulo addition relationship, for each | we can write
by, + b}, — by, = a/L,a € Z. Wefirst calculate the PDF message for the sum

/ / H H .
of b17, and b2’, using convolution:

r3.(b') = R (b)) ® RS /(b')
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Joint Decoding Algorithm

Details: MA-LDLC

According to the relationship between b; = Hx?, we can calculate the
corresponding extrinsic PDFs of b} by convolution:

’
70 - @ &t ()

re Ay

According to the modulo addition relationship, for each / we can write
by, + b}, — by, = a/L,a € Z. Wefirst calculate the PDF message for the sum

/ / H H .
of le and b2’, using convolution:

r3a,l(b/) = Rf,/(b/) ® Rf,/(b,)

Then, we periodically extend the appropriate PDFs rf,(b’) via
RS (b)) =>"r3,(b —aL)
a€ZL

and combine to calculate the a-priori information for the LDLC codeword element
X3 1 (using x3 = Gby):

Rowlx ®R3’(gk/)

1€C
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ecoding Algorithm

P .
s QO Q Qe Q Qe podes
— T~ 5 < o

o e Cae e e

L) jm ©

Y= vanyse yiad 17
——

m The resulting messages Rﬁk(x) are generated from the network coding nodes.

m Each LDLC decoder will repeat the inner and outer iterations until the maximum

outer iteration number N is achieved or until all message variances lie below a
preset threshold value .
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Check nodes

P Variable nod
2= vy
(S LE o TR

Check nodes

m Final decision: after a maximum of MN LDLC iterations, the final variable node
PDF is calculated via

_ 0P/ @ P
fikj=e 202 R? (%) H Qi1 k(x)

leBy
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Joint Decoding Algorithm

Clnr Cin
Check nodes

DD D D
= s VsVl

(EmEIETRINE

nodes

Check nodes

[ E e Cim2 Cini Cin

The integer vector b; is then estimated as

Xj k = argmax f; k ;
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Soft Symbol Relaying

R
»
LoLC
der
F(b)
X'y
Soft symbol relaying

x'3
Hard decision relaying

m Hard decision relaying can cause error propagation to the destination under poor
SR-link SNR conditions (in case of incorrect decoding at the relay).

m Soft symbol relaying chooses as symbol estimate that real vector x’3 which
maximizes the multidimensional PDF F3(x’).

lanagan and Bin Chen
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Complexity of Joint Decoding

Gaussian mixture model (GMM) usually used for representing PDFs (messages)

Complexity dominated by Gaussian mixture reduction algorithm; using GMM with
T Gaussians, complexity of GMR is proportional to T*# [Kurkoski Dauwels '08]

m Let E; = number of edges in the LDLC Tanner graph; Ny = number of outer
iterations

Check node operations: Complexity is approximately proportional to MN,E, T*

Variable node operations: Complexity is approximately proportional to
MNd(E/., + n) T4

m Network coding nodes: Complexity is approximately proportional to
Nd(2Eh + n) T4
m Therefore, total complexity is proportional to Ny[(2M + 2)Ej, + (M + 1)n] T%.

m We use the single-Gaussian approximation method (T = 1, [Kurkoski et al. '09])
for large block size LDLCs (n = 1000).
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Simulation results

Simulation scenario

We compare S-LDLC and MA-LDLC with three competing schemes in a quasi-static
Rayleigh fading environment

m Non-cooperative LDLC
m Network coded 4-PAM cooperation without channel coding (NC)

m Network-Turbo-coded 4-PAM cooperation (NTC) — similar to [Hausl. et al., 06],
but with 4-PAM modulation.
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Simulation results

Simulation scenario

We compare S-LDLC and MA-LDLC with three competing schemes in a quasi-static
Rayleigh fading environment

m Non-cooperative LDLC
m Network coded 4-PAM cooperation without channel coding (NC)
m Network-Turbo-coded 4-PAM cooperation (NTC) — similar to [Hausl. et al., 06],
but with 4-PAM modulation.
We set the link SNRs as follows:
B Y$,D = YS,D = V5D
B YSiR = VSR = VSR

B Ysg = Yrp = Ysp + 6 dB; we vary the SD link SNR.

Mark F. Flanagan and Bin Chen School of EECE, University College Dublin, Ireland

Low-Density Lattice Coded Relaying with Joint Iterative Dec



Simulation results

Simulation scenario

We compare S-LDLC and MA-LDLC with three competing schemes in a quasi-static
Rayleigh fading environment

m Non-cooperative LDLC
m Network coded 4-PAM cooperation without channel coding (NC)

m Network-Turbo-coded 4-PAM cooperation (NTC) — similar to [Hausl. et al., 06],
but with 4-PAM modulation.

We set the link SNRs as follows:
B Ys;D = VS,D = VSD
B YS;R = VSR = VSR
B Ysg = YrD = Ysp + 6 dB; we vary the SD link SNR.

All compared schemes were normalized to have the same overall transmitted power
and code rate (4/3 bits/symbol).
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Simulation results

10
T— Non-cooperative LDLC
—+— Network coding 4PAM
——NTC 4-PAM, n=100
101k NTC 4-PAM, n=1000
E —%— Cooperative S-LDLC, n=100
—©- Cooperative MA-LDLC, n=100
—O— Cooperative MA-LDLC, n=1000, Single Gaussian
o 10°F .
2
o
<]
]
5107 1
£
>
%)
107 1
10°% 1
i i i i i
10 15 20 30 35 40

25
Es/No, dB
# MA-LDLC scheme outperforms all other cooperative schemes

m At SER of 1075, gain is 6.2dB over NC 4-PAM, and 2.5dB over NTC 4-PAM.
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Simulation results

Performance variation with block length

10
10°
L
£ s
5 10
]
°
e
[
>
@
107
——Non-cooperative LDLC
-7 - Cooperative S-LDLC, n=36
1073l —*—Cooperative S-LDLC, n=100 4
-B-Cooperative MA-LDLC, n=36
—&— Cooperative MA-LDLC, n=100 :
T n 1 I
15 20 25 30 35
Es/No (dB)

m For fixed block length, MA-LDLC outperforms S-LDLC.
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Simulation results

Outage Probability and FER

Frame Error Rate

—©—Non-cooperative LDLC
_4| | —— Outage probability of non—cooperation
O Network coding 4-PAM cooperation

—+ NTC 4-PAM cooperation
- % -Cooperative MA-LDLC
—— Outage probability of cooperation

5 10 15

o
T

25 30 35
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m At an FER of 10~*, MA-LDLC outperforms NC 4-PAM by about 4dB, and NTC
4-PAM by about 2dB.
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Simulation results

Soft symbol relaying

10 T T T T T T
= = =Upper bound (non-cooperative LDLC)
- - = Lower bound (cooperative MA-LDLC with perfect SR-link)
—— Cooperative MA-LDLC with hard decision
— G ive MA-LDLC with soft symbol relaying
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m We fix ysp = yrp — 3 dB = 25 dB and vary vysg.

m Soft symbol relaying outperforms hard decision relaying when «ysg is worse than
vsp (the maximum gain is 2.5dB at an SER of 1073).

m As 7sgr increases, hard decision relaying outperforms soft symbol relaying due to
the forwarding of the correct LDLC codeword almost every time by the relay.
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Simulation results

Soft symbol relaying

Symbol Error Rate
>

—— Non-cooperative LDLC
—*— Uncoded network—coded 4-PAM B
107%) = MA-LDLC (hard decision), n=36 DL 4
—B—-MA-LDLC (soft symbol relaying), n=36 © &

-B-MA-LDLC (perfect SR-link), n=36 :

| ~©-MA-LDLC (perfect SR-link), n=100
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m Here vsp = ysg + 5dB = «ygp — 3dB, and we vary ysp.

lanagan and Bin Chen School of El College Dublin, Ireland

Lattice Coded Relaying with Joint Iterative Decodir



Simulation results

Choosing the inner and outer iteration numbers

10
=7 Cooperative LDLC, M=5, N=1
—+ Cooperative LDLC, M=5, N=3
|—9—Cooperative LDLC, M=5, N=5
| ~©~Cooperative LDLC, M=5, N=15
—#— Cooperative LDLC, M=5, N=30
107

3|

0

Symbol Error Rate

N\
b | | N
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m Inner iteration number M is chosen as 5 to balance the convergence rate and
decoding complexity.

m It can be seen that there is marginal benefit for increasing outer iterations N
beyond 15.
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Simulation results

Investigation of the average required number of it

=%~ Cooperative LDLC,

@ IS a
3 3 3
T T T

Average number of iterations

N
S
T

15 20 30 35

Es/No.dB25
m Plot shown for n = 1000, single-Gaussian approximation decoding.

m Average required number of iterations per LDLC decoder decreases quickly with
increasing SNR.
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Summary

m We have proposed a new scheme for coded cooperation, based on joint network
coding and low-density lattice coding
m Outlined two approaches for relay processing: S-LDLC and MA-LDLC

m S-LDLC has low decoding complexity due to the simple superposition of codewords;
m MA-LDLC has better performance (shaping gain) due to the usage of modulo-addition

which can improve the power efficiency of the relay.
m Designed an efficient joint iterative decoding structure at the destination node.
m Proposed a soft symbol relaying method to mitigate the error propagation.

m The proposed scheme provides 2.5dB SER gain over network-turbo-coded 4-PAM

and may be easily extended to the case of multiple sources.
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