
Institut Mines-Telecom

Lattice Codes: A theta series
perspective

Jean-Claude Belfiore
Based on joint works with C. Ling (ICL), F. Oggier
(NTU) and A. Campello Jr.

MCM 2015, München



Theta Series
Flatness factor

Some problems involving theta series
Computation of theta series

Outline

Theta Series

Minimum distance and kissing number
How many terms ?

Flatness factor

Coset Encoding
From Sums of Gaussian measures to Theta series

Some problems involving theta series

The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping

Computation of theta series

Even Unimodular Lattices
Even `−modular Lattices

2/30 30 July 2015 J.-C. Belfiore Lattice Codes: A theta series perspective



Theta Series
Flatness factor

Some problems involving theta series
Computation of theta series

Minimum distance and kissing number
How many terms ?

Outline

Theta Series

Minimum distance and kissing number
How many terms ?

Flatness factor

Some problems involving theta series

Computation of theta series

3/30 30 July 2015 J.-C. Belfiore Lattice Codes: A theta series perspective



Theta Series
Flatness factor

Some problems involving theta series
Computation of theta series

Minimum distance and kissing number
How many terms ?

Theta series in Communications: the Past

Definition

Let Λ be a lattice, its theta series is a function
of the complex variable τ (holomorphic in the
upper half plane),

ΘΛ (τ) =
∑
x∈Λ

q‖x‖2

with q = eıπτ (we will also use y = ıτ and
τ ∈ ıR)

Computation of theta series

New problems need the computation of the
full theta series. Hopefully, theta series of
many interesting lattices can be computed by
using Jacobi theta functions,{

ϑ3 (τ) =
∑

k∈Z qk2

ϑ2 (τ) =
∑

k∈Z q(k+ 1
2 )2

Error probability

Error probability of a lattice used on a
Gaussian channel via union bound and
exponential bound of the error function,

Pe ≤
1

2
(ΘΛ (τ)− 1)

evaluated at τ = ı
8πσ2 .

Approximation

First non trivial term of theta series gives,

Pe /
κ

2
e
− d2

8σ2

where d is the minimum distance of the
lattice Λ and κ is its so-called kissing number.
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Theta series in Communications: The Present

The Lattice

Let Γ72 be the extremal
72−dimensional lattice found in
[Nebe, 2010]. Its Hermite
constant is

γ (Γ72) =
d2

min (Γ72)

Vol (Γ72)
1

36

= 8

or approximately 9 dB. One
important invariant of a lattice
is its flatness factor (to be
discussed) which mainly
depends on the theta series of
the lattice.
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72−dimensional lattice found in
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constant is

γ (Γ72) =
d2

min (Γ72)

Vol (Γ72)
1

36

= 8

or approximately 9 dB. One
important invariant of a lattice
is its flatness factor (to be
discussed) which mainly
depends on the theta series of
the lattice.

Approximate theta series

ΘΓ72
(τ) =1 + 6218175600q8

+15281788354560q10

+9026867482214400q12

+1989179450818560000q14

+213006159759990870000q16

+13144087517631410995200q18

+525100718690287495741440q20

+O
(
q20
)
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Figure : Flatness factor of Γ72 and approximation
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Coset Encoding on Z

Lattice Z is used to transmit information symbols

b0b1b2b3b4...

z ∈Z0110001...
Coset Encoder

b2b3b4... → 4Z

(b0b1) →Z/4Z

Figure : Special attention to bits b0 and b1

b0b1 encoded on {0, 1, 2, 3}

Decoding (b0b1)

(b0b1) are recovered using the Euclidean
division, z mod 4.

And with noise..?

What happens if instead of z, we observe
z + noise ?
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Noisy observation (with Z)

Likelihood

Suppose y = z + ν where

pν(x) =
1

√
2πσ

e
− x2

2σ2 .

Likelihood is

py|b1,b2
(x) ∝

∑
z∈4Z

e
− (x−t−z)2

2σ2

where t ∈ {0, 1, 2, 3} is labelled by (b0, b1).

Same in dimension n with a lattice Λb and a
sublattice Λe ⊂ Λb.

Suppose t = 0, then likelihood is

py|t=0 (x) ∝
+∞∑

k=−∞
e
− (x−4k)2

2σ2 , x ∈ [0, 4)
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Noisy observation (with Z)

Likelihood
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√
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∑
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Figure : Sum of Gaussian measures, σ = 0.8
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Figure : Sum of Gaussian measures, σ = 1.7
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How flat the sum of Gaussian measures is ?

Sum of Gaussian measures

Figure : Sum of Gaussian Measures on the
2Z2 lattice with σ2 = 0.3 and σ2 = 0.6

How far is the folded noise distribution from the
uniform distribution on V (Λc )?

Flatness factor (L∞−distance w.r.t. uniform)

εΛc (σ) = max
x∈V(Λc )

∣∣∣∣∣∣∣∣
∑

λ∈Λc

(
1

2πσ2

) n
2

e
− ‖x−λ‖2

2σ2

1/Vol (Λc )
− 1

∣∣∣∣∣∣∣∣
The flatness factor can be computed

εΛc (σ) =

(
Vol (Λc )

2
n

2πσ2

) n
2 ∑
λ∈Λc

e
− ‖λ‖

2

2σ2

︸ ︷︷ ︸
ΘΛc

(
− ı

2σ2

)
−1
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Theta Series again

Definition

ΘΛ (τ) =
∑
x∈Λ

q‖x‖2

with q = eıπτ .

Union Bound

Only the first non trivial term is used,

ΘΛ (τ)− 1 = κqd2
min + · · ·

where κ is the kissing number and d2
min is the

Euclidean square minimum distance.

Full Theta series needed

For ...

I Coset encoding

I Modulo Λ decoding

I Construction D with “per layer” decoding

I Finite length analysis of
compute-and-forward

I Physical Layer Security

I Discrete Gaussian Shaping
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Union Bound

Only the first non trivial term is used,

ΘΛ (τ)− 1 = κqd2
min + · · ·

where κ is the kissing number and d2
min is the

Euclidean square minimum distance.

Full Theta series needed

For ...

I Coset encoding

I Modulo Λ decoding

I Construction D with “per layer” decoding

I Finite length analysis of
compute-and-forward

I Physical Layer Security

I Discrete Gaussian Shaping
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Gaussian Wiretap Channel Flatness Factor

Information Leakage [Ling & al., 14]

Let M be the transmitted secret message and Zn be the vector received by Eve. Then,

I (M; Zn) ≤ 2εΛe (σ) (nR − log εΛe (σ))

where

εΛe (σ) =

(
Vol (Λe )

2
n

2πσ2

) n
2

ΘΛe

( ı

2πσ2

)
− 1

is the flatness factor of the lattice Λe .

Probability of correct decision

Probability of correct decision can also been expressed as a function of the flatness
factor,

Pc,e ≤ 2−nR (εΛe (σ) + 1)
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Discrete Gaussian Sampling on Λ

Illustration

Figure : Discrete Gaussian Sampling on Λ = Z2

Lattice sampling

Sample a lattice point x with probability

e
− ‖x‖2

2σ2∑
λ∈Λ e

− ‖λ‖
2

2σ2

Universal algorithms

Universal algorithms (e.g. the
Metropolis-Hastings-Klein algorithm) are very
slow. Necessity of deriving more specialized
ones.

Applications

I Towards discrete Gaussian shaping

I Lattice decoding

I Lattice crypto
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Sampling A2

Sampling of Z
Use method of [Brakerski & al., 13].
Probabilistic sampler for αZ + a by using a
sampler over the real Gaussian distribution
and a rejection algorithm : SαZ+a

Probabilities of cosets

Coset C0 = Z⊕
√

3Z has probability,

p0 =
ΘC0

(q)

ΘA2
(q)

=
ϑ3 (q)ϑ3

(
q3
)

ϑ3 (q)ϑ3 (q3) + ϑ2 (q)ϑ2 (q3)

while coset C1 =
((

Z + 1
2

)
⊕
(√

3Z + 1
2

))
has probability

p1 =
ϑ2 (q)ϑ2

(
q3
)

ϑ3 (q)ϑ3 (q3) + ϑ2 (q)ϑ2 (q3)

evaluated at q = e
− 1

2πσ2 .

Construction of A2

We use construction,

A2 =
(
Z⊕
√

3Z
)
∪

((
Z +

1

2

)
⊕
√

3

(
Z +

1

2

))

Algorithm

1. Choose C0 or C1 with probability p0 or
p1.

2. Use sampler SZ if C0 or SZ+ 1
2

if C1.

3. Use sampler S√3Z if C0 or S√
3Z+
√

3
2

if

C1.
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Discrete Gaussian Shaping Rate and Power

Lattice Code

Instead of using two nested lattices (coding +
shaping), use only one lattice. Each point is
sampled according to Gaussian discrete
probability.

Power

The power of the lattice code is

P =
1

nπ

Θ
′
Λ (y)

ΘΛ(y)

evaluated at y = 1
2πσ2 .

Lattice Gaussian Coding achieves the
capacity of the Gaussian Channel

Mutual information when using a Lattice
Gaussian Code is [Ling & B., 13]

ID ≥
1

2
log (1 + SNR)−

6ε

n

where ε is related to the flatness factor of the
lattice.

Rate of the code

The rate (entropy) is,

R =
1

n

(
1

π

Θ
′
Λ (y)

ΘΛ(y)
+ log ΘΛ(y)

)

evaluated at y = 1
2πσ2 .
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Unimodular lattices

Definition

A lattice Λ of rank n is unimodular if

I Λ is integral, i.e. its Gram matrix B = A> · A ∈ GLn (Z).

I Λ = Λ?

Examples

Zn is unimodular, E8 and Λ24 (Leech lattice) are unimodular.

Definition

Moreover, if the square length of any point of Λ is an even integer, then Λ is an even
unimodular lattice. E8 and Λ24 are even unimodular.
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Theta series as modular forms

Since Λ = Λ? (and Vol (Λ) = 1), we get from Jacobi’s identity,

ΘΛ

(
−

1

τ

)
=
( τ
ı

) n
2

ΘΛ (τ) .

From the periodicity of the theta series, and since Λ is even,

ΘΛ (τ + 1) = ΘΛ (τ) .

Action of PSL2 (Z)

The group generated by τ 7→ τ + 1 and τ 7→ − 1
τ

acts on the theta series of an even

unimodular lattice. This group is PSL2 (Z). So, for any

[
a b
c d

]
, ad − bc = 1 in

SL2 (Z), if Λ is an even unimodular lattice, we have,

ΘΛ

(
aτ + b

cτ + d

)
= (cτ + d)

n
2 ΘΛ (τ)

which means that ΘΛ (τ) is a modular form of weight n
2

for the “full” group SL2 (Z).
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Theta series of E8: A Modular form approach

Structure

The set of modular forms of weight k,
Mk (SL2 (Z)) is a vector space of dimension 0
if k < 4 and of dimension 1 when k = 4.

Eisenstein

Modular forms of weight 4 are proportional to
the Eisenstein series

E4(q) = 1 + 240
∞∑

m=1

σ3(m)q2m

where σ3(m) is the sum of the cubes of the
divisors of m.

The first even unimodular lattice is of
dimension 8 and its theta series is

E4(q) = 1 + 240q2 + 2160q4 + 6720q6 + · · ·

The E8 lattice

There is one even unimodular lattice of
dimension 8, E8 with theta series,

ΘE8
(q) = E4(q) = 1 + 240

∞∑
m=1

σ3(m)q2m
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Theta series of E8: A Coding approach

Jacobi theta functions

Define

ϑ3(q) =
+∞∑

k=−∞
qk2

= ΘZ(q)

ϑ2(q) =
+∞∑

k=−∞
q(k+ 1

2 )2

= ΘZ+ 1
2

(q)

and consider construction A,

Λ = 2Z8 + C(8, 4)F2

=
⋃
x∈C

(
2Z8 + x

)

We get

ΘΛ(q) =
∑
x∈C

Θ2Z8+x(q)

Cosets

We have
Θ2Z8 (q) = ϑ8

3

(
q4
)

and more generally,

Θ2Z8+x(q) = ϑ3

(
q4
)n−w(x)

ϑ2

(
q4
)w(x)

where w (x) is the Hamming weight of x.

E8 again

Let wC(x , y) = x8 + 14x4y4 + y8 be the
Hamming weight enumerator of C, Λ has
theta series,

ΘΛ(q) = wC
(
ϑ3

(
q4
)
, ϑ2

(
q4
))

= 1 + 240q4 + 2160q8 + 6720q12 + · · ·

In fact, Λ =
√

2E8.
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Extremal Lattices

Theorem

The theta series of an even unimodular
lattice, ΘΛ(q) is an isobaric polynomial in E4

and ∆24 where

∆24(q) = q
∞∏

m=1

(1− qm)24

= q − 24q2 + 252q3 − · · ·

is the Ramanujan form (of weight 12).

More precisely, let n = 24m + 8k, with
k ∈ {0, 1, 2};

ΘΛ = E 3m+k
4 +

m∑
j=1

aj E
3(m−j)+k
4 ∆j

24

Leech lattice Λ24

We get

ΘΛ24
= E 3

4 + a1∆24

= 1 + q2 (a1 + 720) + · · ·

In order to maximize the minimum distance,
we choose a1 = −720, which gives

ΘΛ24
= E 3

4 − 720∆24

= 1 + 196560q4 + 16773120q6 + · · ·

The minimum distance of an even unimodular
lattice is upperbounded,

d2
min ≤ 2m + 2.

Extremal lattices achieve this bound.
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`−modular lattices

Definition

A lattice Λ of rank n is `−modular if

I Λ is integral, i.e. its Gram matrix B = A> · A ∈ GLn (Z).

I There exists a similarity ϕ (isometry + scaling) of similarity factor equal to ` such
that

ϕ (Λ?) = Λ and 〈ϕ(x), ϕ(x)〉 = ` 〈x, y〉 , ∀x, y ∈ Rn.

I Moreover, if the square length of any point of Λ is an even integer, then Λ is an
even `−modular lattice.

Examples

D4 and Λ16 are 2−modular, A2 and K12 are 3−modular, the Maaß lattice (n = 8) is
5−modular, the Barnes lattice (n = 6) is 7−modular. All are even.

Property

The determinant of a `−modular lattice is `
n
2 .
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Extremal Lattices

Theorem

When σ1 (`) divides 24, the theta series of a (strongly) even `−modular lattice, ΘΛ(q)
is an isobaric polynomial in Θ`,min(q) and ∆`(q) where

∆`(q) =
∏
m|`

η (qm)
24
σ1(`)

η(q) = q
1

24
∏∞

j=1

(
1− qj

)
is the Dedekind eta function and Θ`,min(q) is the theta

series of the smallest (strongly) even `−modular lattice.

Examples

Here are the smallest even (strongly) `−modular lattices when σ1 (`) divides 24:

` 1 2 3 5 7 11 23
n 8 4 2 4 2 2 2

Λ`,min E8 D4 A2 QQF4 Z
[

1+
√
−7

2

]
Z
[

1+
√
−11

2

]
Z
[

1+
√
−23

2

]
Table : Smallest even modular lattices (` prime)

23/30 30 July 2015 J.-C. Belfiore Lattice Codes: A theta series perspective



Theta Series
Flatness factor

Some problems involving theta series
Computation of theta series

Even Unimodular Lattices
Even `−modular Lattices

Extremal Lattices

Theorem

When σ1 (`) divides 24, the theta series of a (strongly) even `−modular lattice, ΘΛ(q)
is an isobaric polynomial in Θ`,min(q) and ∆`(q) where

∆`(q) =
∏
m|`

η (qm)
24
σ1(`)

η(q) = q
1

24
∏∞

j=1

(
1− qj

)
is the Dedekind eta function and Θ`,min(q) is the theta

series of the smallest (strongly) even `−modular lattice.

Examples

Here are the smallest even (strongly) `−modular lattices when σ1 (`) divides 24:

` 1 2 3 5 7 11 23
n 8 4 2 4 2 2 2

Λ`,min E8 D4 A2 QQF4 Z
[

1+
√
−7

2

]
Z
[

1+
√
−11

2

]
Z
[

1+
√
−23

2

]
Table : Smallest even modular lattices (` prime)

23/30 30 July 2015 J.-C. Belfiore Lattice Codes: A theta series perspective



Theta Series
Flatness factor

Some problems involving theta series
Computation of theta series

Even Unimodular Lattices
Even `−modular Lattices

Extremal Lattices

Theorem
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∏
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∏∞
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1− qj
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series of the smallest (strongly) even `−modular lattice.

Examples

Here are the smallest even (strongly) `−modular lattices when σ1 (`) divides 24:

` 6 14 15
n 4 4 4

Λ`,min A2 +
√

2A2 Z
[

1+
√
−7

2

]
+
√

2Z
[

1+
√
−7

2

]
E(15)

Table : Smallest even strongly modular lattices (` composite)
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`−Modular Lattices (` = 3)

Smallest Lattice

Hexagonal lattice A2 with theta series,

ΘA2
(q) = ϑ3

(
q2
)
ϑ3

(
q6
)

+ ϑ2

(
q2
)
ϑ2

(
q6
)

and
∆3(q) =

[
η (q) η

(
q3
)]6

Example: ` = 3

More precisely, let n = 12m + 2k, with
k ∈ {0, 1, 2, 3, 4, 5};

ΘΛ = Θ6m+k
A2

+
m∑

j=1

aj Θ
6(m−j)+k
A2

∆j
3

Coxeter Todd K12

We get

ΘK12
= Θ6

A2
+ a1∆3

= 1 + q2 (a1 + 36) + · · ·

In order to maximize the minimum distance,
we choose a1 = −36, which gives

ΘK12
= Θ6

A2
− 36∆3

= 1 + 756q4 + 4032q6 + 20412q8 + · · ·

The minimum distance of an even 3−modular
lattice is upperbounded,

d2
min ≤ 2m + 2.
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Modular lattices ` = 3

Construction A

Let ζ = 1+
√
−3

2
. Then, construction

√
2Λ = 2Z [ζ]n + C (n, k)F4

gives an Hermitian Z [ζ]−lattice. Its trace
lattice is a Z−lattice which is 3−modular
when C is self dual (with k = n

2
) for the

Hermitian product over F4 (d2
min (Λ) ≤ 4).

Mapping

We have Z [ζ] /2Z [ζ] ' F4 since 2 is inert.

F4 0 1 ω ω2

Z [ζ] /2Z [ζ] 0 1 ζ ζ2

w2
E 0 2 2 2

Table : Coset representatives

Construction of K12

Let C be the (6, 3) hexacode over F4. Then,
the trace lattice of

2Z [ζ]6 + C (6, 3)F4

is equivalent to K12.

Hexacode

Self dual MDS code of length 6 over F4 with
generator matrix,

G =

 1 0 0 1 ω ω
0 1 0 ω 1 ω
0 0 1 ω ω 1
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K12: From weight enumeration to theta series

Embedding

F4 0 1 ω ω2

Z [ζ] /2Z [ζ] 0 1 ζ ζ2

w2
E 0 2 2 2

Table : Coset representatives

Cosets theta series
I Coset 0 has theta series

θ=0(q) = ϑ3

(
q4
)
ϑ3

(
q12
)
+ϑ2

(
q4
)
ϑ2

(
q12
)

I Other cosets have theta series

θ 6=0(q) = ϑ2

(
q4
)
ϑ3

(
q12
)
+ϑ3

(
q4
)
ϑ2

(
q12
)

Hexacode

Hamming weight enumerator is

wH (x , y) = x6 + 45x2y4 + 18y6

Theta series

We get

ΘK12
(q) = wH

(
θ=0(q), θ 6=0(q)

)
= 1 + 756q4 + 4032q6 + · · ·
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`−modular lattices (` = 7)

Smallest Lattice

Lattice Λ2,7 = Z
[

1+
√
−7

2

]
with theta series,

ΘΛ2,7
(q) = ϑ3

(
q2
)
ϑ3

(
q14
)

+ϑ2

(
q2
)
ϑ2

(
q14
)

and
∆7(q) =

[
η (q) η

(
q7
)]3

Example: ` = 7

More precisely, let n = 6m + 2k, with
k ∈ {0, 1, 2};

ΘΛ = Θ3m+k
Λ2,7

+
m∑

j=1

aj Θ
3(m−j)+k
Λ2,7

∆j
7

Barnes lattice P6

We get

ΘP6
= Θ3

Λ2,7
+ a1∆7

= 1 + q2 (a1 + 6) + · · ·

In order to maximize the minimum distance,
we choose a1 = −6, which gives

ΘP6
= Θ6

Λ2,7
− 6∆7

= 1 + 42q4 + 56q6 + 84q8 + 168q10 + · · ·

The minimum distance of an even 7−modular
lattice is upperbounded,

d2
min ≤ 2m + 2.
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Modular lattices ` = 7

Construction A

Let α = 1+
√
−7

2
. Then, construction

√
2Λ = 2Z [α]n + C (n)F2×F2

gives an Hermitian Z [α]−lattice. Its trace
lattice is a Z−lattice which is 7−modular
when C is self dual for the Hermitian product
over F2 × F2 (d2

min (Λ) ≤ 4).

Construction of P6

There exists a self dual code C over F2 × F2

such that the trace lattice of

2Z [α]3 + C (3)F2×F2

is equivalent to P6.

C (3)F2×F2

Self dual code of length 3 over F2 × F2

defined by using the binary parity-check codes
for the first bit and the repetition code for the
second one.

We have Z [α] /2Z [α] ' F2 × F2 since 2 is split in Z [α].

F2 × F2 0 = (0, 0) 1 = (1, 1) (1, 0) (0, 1)
Z [α] /2Z [α] 0 1 α 1− α = ᾱ

w2
E 0 2 4 4

Table : Coset representatives
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√
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P6: From weight enumeration to theta series

Cosets theta series
I Coset 0 has theta series

θ0(q) = ϑ3

(
q4
)
ϑ3

(
q28
)
+ϑ2

(
q4
)
ϑ2

(
q28
)

I Coset 1 has theta series

θ1(q) = ϑ2

(
q4
)
ϑ3

(
q28
)
+ϑ3

(
q4
)
ϑ2

(
q28
)

I Other cosets have theta series

θα(q) =
1

2
ϑ2 (q)ϑ2

(
q7
)

Code over F2 × F2

Symmetrized weight enumerator is

swe (x , y , z) = x3 + 3y2z + 3xz2 + z3

We get

ΘP6
(q) = swe (θ0(q), θ1(q), θα(q))

= 1 + 42q4 + 56q6 + 84q8 + · · ·

F2 × F2 0 = (0, 0) 1 = (1, 1) (1, 0) (0, 1)
Z [α] /2Z [α] 0 1 α 1− α = ᾱ

w2
E 0 2 4 4

Table : Coset representatives
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Conclusion

I The importance of theta series in Communications is increasing.

I Need of better understanding of theta series.
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