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_ Theta series in Communications: the Past

Let A be a lattice, its theta series is a function
of the complex variable T (holomorphic in the
upper half plane),

2
on(r) = X al
xENA

with g = '™ (we will also use y =7 and
T €1R)
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_ Theta series in Communications: the Past

Error probabilty

Let A be a lattice, its theta series is a function
of the complex variable T (holomorphic in the
upper half plane),

2
on(r) = X al
xENA

with g = '™ (we will also use y =7 and
T € 1R)

Error probability of a lattice used on a
Gaussian channel via union bound and
exponential bound of the error function,

Pe< 2 (@n(r) ~1)

2
8mwo?”

evaluated at 7 =

Approximation

First non trivial term of theta series gives,

where d is the minimum distance of the
lattice A and & is its so-called kissing number.
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_ Theta series in Communications: the Past

Let A be a lattice, its theta series is a function
of the complex variable T (holomorphic in the
upper half plane),

On(r) =3 gl

xENA

with g = '™ (we will also use y =7 and
T €1R)

Computation of theta series

New problems need the computation of the
full theta series. Hopefully, theta series of
many interesting lattices can be computed by
using Jacobi theta functions,

{

93(7) =D kez q .
9 (1) = Tyep alkt?)

V.
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Error probability

Error probability of a lattice used on a
Gaussian channel via union bound and
exponential bound of the error function,

P, < %(eA(T)—n

K3

evaluated at 7 = 5.
8o

Approximation

First non trivial term of theta series gives,

where d is the minimum distance of the
lattice A and & is its so-called kissing number.
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_ Theta series in Communications: The Present

Let 72 be the extremal
72—dimensional lattice found in
[Nebe, 2010]. Its Hermite
constant is

driin (r72) =8

v (F72) = T
Vol (r72)35

or approximately 9 dB. One
important invariant of a lattice
is its flatness factor (to be
discussed) which mainly
depends on the theta series of
the lattice.
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_ Theta series in Communications: The Present

The Lattice Approximate theta series

Let 72 be the extremal
72—dimensional lattice found in
[Nebe, 2010]. Its Hermite
constant is

d2. (T72
v(M72) = in (T72)_ 2 =8
Vol (I'72) 36

or approximately 9 dB. One
important invariant of a lattice
is its flatness factor (to be
discussed) which mainly
depends on the theta series of
the lattice.

Or,, (1) =1 + 62181756004®
1152817883545609°
+9026867482214400¢"2

+19891794508185600004*
+213006159759990870000¢1°
+131440875176314109952004*8
+5251007186902874957414409%°

10 (q20)
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The Lattice Flatness factor

Let 72 be the extremal
72—dimensional lattice found in
[Nebe, 2010]. Its Hermite
constant is

dr%]in (r72) -8

v (F72) = i
Vol (F72)%

or approximately 9 dB. One
important invariant of a lattice
is its flatness factor (to be
discussed) which mainly
depends on the theta series of
the lattice.
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_ Theta series in Communications: The Present

&1, (VNR)

Flatness Factor of I'7»
10F /
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Figure : Flatness factor of 72 and approximation
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_ Coset Encoding on Z

Lattice Z is used to transmit information symbols

0110001... €7
——>Coset Encoder——
bob1byb3by...

Figure : Special attention to bits by and by
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_ Coset Encoding on Z

Lattice Z is used to transmit information symbols

0110001... €7
——>Coset Encoder———
bob1byb3by... (boby) — 2147

Figure : Special attention to bits by and by

7/30 30 July 2015 J.-C. Belfiore Lattice Codes: A theta series perspective ig ml



Theta Series

Flatness factor
Some problems involving theta series

Computation of theta series

_ Coset Encoding on Z

Coset Encoding
From Sums of Gaussian measures to Theta series

Lattice Z is used to transmit information symbols

0110001...

bob1bab3by...

Coset Encoder]

zeZ
(boby) — 2142
bobsby...— 4Z

Figure : Special attention to bits by and by

bob; encoded on {0,1,2,3}
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_ Coset Encoding on Z

Lattice Z is used to transmit information symbols

0110001... €7
——>Coset Encoder———
bob1byb3by... (boby) — 2147

bob3by... — 4Z

Figure : Special attention to bits by and by

bob; encoded on {0,1,2,3}

Decoding (bob1)

(boby) are recovered using the Euclidean
division, z mod 4.
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_ Coset Encoding on Z

Lattice Z is used to transmit information symbols

0110001... €7
——>Coset Encoder———
bob1byb3by... (boby) — 2147

bob3by... — 4Z

Figure : Special attention to bits by and by

bob; encoded on {0,1,2,3}

Decoding (bob1) And with noise..?
(bob1) are recovered using the Euclidean What happens if instead of z, we observe
division, z mod 4. z + noise ?
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_ Noisy observation (with Z)

Likelihood

Suppose y = z + v where

1 _ 2
v(x) = me 202,
Likelihood is
_ (x=t=2)?
Pylbrby (X) < Y& 22

z€4Z

where t € {0,1,2,3} is labelled by (b, b1).

isTech
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_ Noisy observation (with Z)

Likelihood Suppose t = 0, then likelihood is

Suppose y = z + v where (x—ak)?
Py|t=0 X) z{: e 27 , X € [074)
( ) 1 A,JEZ k=—o00
X)= ——e 202.
v V27o
LOFT T T T T T —
Likelihood is \ f i
| [ Il
oal | 1 [ ]
(X*f* 2)? | | [ 1
py\bl,bg X) Z e 202 sl ‘I I\ I, II |I ]
z€AL |‘ [ I\ \I
| |
04t | | [ ]
where t € {0,1,2,3} is labelled by (bo, by ). ‘. . |
-~ oz | | ." ‘. ]
ool ‘.‘\,I,/‘ ‘ ..'—. J ,_J. ) I‘",__
1] 2 4 6 8 10 12 14

Figure : Sum of Gaussian measures, c = 0.4
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_ Noisy observation (with Z)

Likelihood Suppose t = 0, then likelihood is

Suppose y = z + v where (x—4k)?
Py|t=0 X) z{: e 27 , X € [074)
( ) 1 A,JEZ k=—o00
pu(x) = ——e 22,
v \/§7rcr
1.0FT T T T —
Likelihood is \
oal | [ ]
(X*f* 2)? | [ [
Py|by by X) Z € 202 ol | [ - Iw'l I‘-I ]
2€4Z | L S A T
04r I", i \ "" | f \ 5
where t € {0,1,2,3} is labelled by (bo, b1). (N Vo] Voo Vo
- oz b 4 ! 4 ! | ! \ .." 4
0.0k -|, L \l 1 ! L L =
1] 2 4 6 8 10 12 14

Figure : Sum of Gaussian measures, o = 0.8
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_ Noisy observation (with Z)

Suppose t = 0, then likelihood is

Likelihood

Suppose y = z + v where (x—4k)?
Py|t=0 X) Z e 27 , X € [074)
( ) 1 ,sz k=—o00
X)) = —e 204,
v V27o
1LOFT T T T T |
Likelihood is /
o8l | [ [ ]
_lia)? | R T [
Pylby,b X) Z € 2% asf | / \ / | / \ A
z€AL Voo L Vo Voo
04l / \ ] (-
where t € {0,1,2,3} is labelled by (bo, b1). . y
0z -
0.0 L i ! 1 |
1] 2 4 6 8 10 12 14

Figure : Sum of Gaussian measures, 0 =1
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_ Noisy observation (with Z)

T e Suppose t = 0, then likelihood is

Suppose y = z + v where T (x—a?
Py|t=0 (X) & Z € 2%, X € [074)
1 <2 k=—o0

v(x) = ——e 202,

\/§7TO‘

Likelihood is A ]
08 -
()(7tfz)2 |
Py|by,by (x) o Z € 202 o6l /]
zE4Z

04 F -

where t € {0,1,2,3} is labelled by (bo, b1).
02 -
0.0k s s s s s s s =

1] 2 4 6 8 10 12 14

Figure : Sum of Gaussian measures, o = 1.2
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Coset Encoding
From Sums of Gaussian measures to Theta series

_ Noisy observation (with Z)

Likelihood

Suppose y = z 4+ v where

1 2
v(x) = ——e 257,

\@71'0'
Likelihood is
(><7tfz)2

E e 202

z€4Z

Py|by,b, (X) o

where t € {0,1,2,3} is labelled by (b, b1).

30 July 201

Suppose t = 0, then likelihood is

(x—4k)?
Py|t=0 (x) Z e 202, x¢€l0,4)
k=—o00

Figure : Sum of Gaussian measures, o = 1.4
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Flatness factor

Some problems involving theta series
Computation of theta series

Coset Encoding
From Sums of Gaussian measures to Theta series

_ Noisy observation (with Z)

Likelihood

Suppose y = z 4+ v where

1 2

——e 207,
\@71'0'

V(x) =

Likelihood is

e -t

z€4Z

Py|by,b, (X) o

where t € {0,1,2,3} is labelled by (b, b1).

Suppose t = 0, then likelihood is

(x—4k)?
Py|t=0 (x) Z e 202, x¢€l0,4)
k=—o00

Sum of Gaussian measures, o = 1.7

TELECDM
wwisTe

Figure :

30 July 2015 J.-C. Belfiore Lattice Codes: A theta series perspective - ml



Theta Series
Flatness factor Coset Encoding
Some problems involving theta series From Sums of Gaussian measures to Theta series
Computation of theta series

_ Noisy observation (with Z)

Suppose t = 0, then likelihood is

Likelihood

Suppose y = z + v where (x—4k)2
Py|t=0 X) Z e 27 , X € [074)
k=—o00

1 _ 2
pv(ix) = ——e 202 .
V( ) \@mr
D . e e . . . .
Likelihood is &
x—t—z2 1of 1
Py|by,by (x) o Z e sl ]
z€A4AZ )
06} 4
where t € {0,1,2,3} is labelled by (b, b1). o4l ]
02k 4
0.0k L L L L L L I =
1] 2 4 6 8 10 12 14

Figure : Sum of Gaussian measures, o = 2.2
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_ Noisy observation (with Z)

Suppose t = 0, then likelihood is

Likelihood
Suppose y = z + v where _ =a?
Py|t=0 X) j{: € 207 x € [074)
( ) 1 _X722 k=—o00
pv(ix) = ——e 204,
v \@mr
B e e e .
Likelihood is &
(x—t—2)? Lok ]
Py|by,by (x) o Z e sl ]
z€A4AZ )
06} ]
where t € {0,1,2,3} is labelled by (b, b1). o4l ]
02 4
Same in dimension n with a lattice A, and a B S S v R e Vi
sublattice Ae C Ap.

Figure : Sum of Gaussian measures, o = 2.2
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_ How flat the sum of Gaussian measures is ?

Sum of Gaussian measures

Figure : Sum of Gaussian Measures on the
277 lattice with o> = 0.3 and o = 0.6

TELECOM

ParisTech
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Theta Series
Flatness factor Coset Encoding
Some problems involving theta series From Sums of Gaussian measures to Theta series
Computation of theta series

_ How flat the sum of Gaussian measures is ?

How far is the folded noise distribution from the
LINROIRSACSSIAUREASTIES uniform distribution on V (Ac)?

Figure : Sum of Gaussian Measures on the
277 lattice with o> = 0.3 and o = 0.6
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Theta Series
Flatness factor
Some problems involving theta series

Coset Encoding
From Sums of Gaussian measures to Theta series

Computation of theta series

_ How flat the sum of Gaussian measures is ?

How far is the folded noise distribution from the
LINROIRSACSSIAUREASTIES uniform distribution on V (Ac)?

Flatness factor (L., —distance w.r.t. uniform)

_lix=2)2

n
1 2 2
Z)\E/\c (271'0'2) € 27

en (o) = max 1/vol (A -1

Figure : Sum of Gaussian Measures on the
277 lattice with o> = 0.3 and o = 0.6
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Theta Series
Flatness factor
Some problems involving theta series

Coset Encoding
From Sums of Gaussian measures to Theta series

Computation of theta series

_ How flat the sum of Gaussian measures is ?

Sum of Gaussian measures

How far is the folded noise distribution from the
uniform distribution on V (Ac)?

Flatness factor (L., —distance w.r.t. uniform)

_lix=2)2
252

ZAEAC (271'10'2) ’ €
1/Vol (Ac)

€AC(O'):X -1

The flatness factor can be computed

2\ 3 2
Vol (Ac)n B
enc(o) = (W Z e 27 —1
Figure : Sum of Gaussian Measures on the €A
277 lattice with o® = 0.3 and 0 = 0.6 .
J on(~322)
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_ Theta Series again

Definition

On(r) = o’

xEA

with g = e'™7.
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_ Theta Series again

On(r) = o’

xEA

with g = e*™7.

Only the first non trivial term is used,

2
@/\(T)—].:K/qdmi"{—‘n

where & is the kissing number and d%in is the
Euclidean square minimum distance.

R P ——— =



Theta Series
Flatness factor Coset Encoding
Some problems involving theta series From Sums of Gaussian measures to Theta series
Computation of theta series

_ Theta Series again

On(7) = Zq”tz Full Theta series needed

xEN For ...

with g = e*™7. > Coset encoding

» Modulo A decoding

Only the first non trivial term is used, > Finite length analysis of
compute-and-forward

Op(r)—1= qur%‘in P > Physical Layer Security

. .. . » Discrete Gaussian Shapin
where & is the kissing number and d%in is the PIng J

Euclidean square minimum distance.
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Some problems involving theta series
The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping
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_ Gaussian Wiretap Channel Frarness Facror

The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping

Information Leakage [Ling & al., 14]

Let M be the transmitted secret message and Z" be the vector received by Eve. Then,

I(M; Z") < 2ep,(0) (nR — logea, (o))
where R
2\ 2

Vol (Ae) v
= —— — ) -1
e (@) 2mo? On. ( 2mo? )

is the flatness factor of the lattice Ae.

T!‘—:LECD
ari
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_ Gaussian Wiretap Channel Frarness Facror

The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping

Information Leakage [Ling & al., 14]

Let M be the transmitted secret message and Z" be the vector received by Eve. Then,

I(M; Z") < 2ep,(0) (nR — logea, (o))

where

2\ D
[ Vol(Ae)n 2 P
ene(@) = < 2o ) On. (27ra2) -1

is the flatness factor of the lattice Ae.

| A\

Probability of correct decision

Probability of correct decision can also been expressed as a function of the flatness

factor,
Pee <27 (ep, (o) +1)
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Theta Series

Flatness factor

Some problems involving theta series
Computation of theta series

_ Discrete Gaussian Sampling on A

The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping

llus

o
x‘ﬁ'ﬁ“\‘llv
",Y"" " il

\“‘H ! J
RMRKIAR

Figure : Discrete Gaussian Sampling on A = 72
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Theta Series

Flatness factor

Some problems involving theta series
Computation of theta series

_ Discrete Gaussian Sampling on A

Lattice sampling

The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping

Figure : Discrete Gaussian Sampling on A = 72
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Theta Series The Gaussian Wiretap Channel
Flatness factor . " "
. . . Discrete Gaussian Sampling
Some problems involving theta series N . "
. : Discrete Gaussian Shaping
Computation of theta series

_ Discrete Gaussian Sampling on A
Lattice sampling

Sample a lattice point x with probability

lus

IIxII2

e 2o
e
Yaene 2’

Universal algorithms

Universal algorithms (e.g. the
Metropolis-Hastings-Klein algorithm) are very
slow. Necessity of deriving more specialized
ones. )

Figure : Discrete Gaussian Sampling on A = 72

TELEC!
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Theta Series

Flatness factor

Some problems involving theta series
Computation of theta series

The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping

_ Discrete Gaussian Sampling on A

Figure : Discrete Gaussian Sampling on A = 72

Lattice sampling
Illustratio Sample a lattice point x with probability

13/30 30 July 2015 J.-C. Belfiore Lattice Codes: A theta series perspective ;g

4

iversal algorithms

Universal algorithms (e.g. the
Metropolis-Hastings-Klein algorithm) are very
slow. Necessity of deriving more specialized
ones. )

» Towards discrete Gaussian shaping

> Lattice decoding

> Lattice crypto

TELECOM
ParisTe
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Flatness factor

Some problems involving theta series
Computation of theta series

_ Sampling A

The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping

Construction of A,

Sampling of Z

Use method of [Brakerski & al., 13]. We use construction,
Probabilistic sampler for aZ + a by using a 1 1
sampler over the real Gaussian distribution A = (Z & \/§Z) U ((Z + 5) ® V3 (Z + 5))

and a rejection algorithm : Sy74,
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Flatness factor

Some problems involving theta series
Computation of theta series

_ Sampling A

Sampling of Z
Use method of [Brakerski & al., 13].
Probabilistic sampler for aZ + a by using a

sampler over the real Gaussian distribution
and a rejection algorithm : Sy74,

v

The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping

Construction of A,

We use construction,

a2+ 052+ )

Probabilities of cosets

Coset Cyp = Z @ /37 has probability,

_ O¢(q) _ 93 (q) V3 (q°)

~Oa(q)  93(9)93(a%) + 92(q) 92 ()
while coset C; = ((Z + %) @ (\/§Z + %))
has probability

92 (q) V2 (4°)
93(q) 93 (q®) + 92 (q) V2 (4°)

b1 =

__1
evaluated at g = e 2702 .

TELECOM
ParisTech
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_ Sampling A

Use method of [Brakerski & al., 13].
Probabilistic sampler for aZ + a by using a
sampler over the real Gaussian distribution
and a rejection algorithm : Sy74,

v

The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping

Construction of A,

We use construction,

Ax = (ZEB\/’gZ) U <<Z+

1

)

%)@\/5<2+2

y

Probabilities of cosets

Coset Cyp = Z @ /37 has probability,
_ 9q(q) _ 93 (q) 93 (q°)
O, (q)  93(q)93(q%) + 92 (q) 92 (q%)

while coset C; = ((Z + %) @ (\/§Z + %))
has probability

92 (q) V2 (4°)
93(q) 93 (q®) + 92 (q) V2 (4°)

__1
2mo2 |

b1 =

evaluated at g = e

Algorithm

1. Choose Cp or C; with probability pg or
P1-

Use sampler Sz if Cy or SZ 1 if Cy.
Use sampler S\fZ if Cp or S\[Z f if
C.

TELECOM
ParisTech
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Theta Series The Gaussian Wiretap Channel
Flatness factor . . .
. . : Discrete Gaussian Sampling
Some problems involving theta series . . "
. N Discrete Gaussian Shaping
Computation of theta series

_ Discrete Gaussian Shaping RATE AND POWER

Lattice Code

Instead of using two nested lattices (coding +
shaping), use only one lattice. Each point is
sampled according to Gaussian discrete
probability.

TELE
ari
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Theta Series

Flatness factor

Some problems involving theta series
Computation of theta series

_ Discrete Gaussian Shaping Rare axp Powen

Lattice Gaussian Coding achieves the
capacity of the Gaussian Channel

Lattice Code Mutual information when using a Lattice
Gaussian Code is [Ling & B., 13]

The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping

Instead of using two nested lattices (coding +
shaping), use only one lattice. Each point is 1
sampled according to Gaussian discrete Ip > = log (1+ SNR) — —
probability. 2 n

6e

where ¢ is related to the flatness factor of the
lattice.

TELECOM
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Computation of theta series

_ Discrete Gaussian Shaping Rare axp Powen

Lattice Gaussian Coding achieves the
capacity of the Gaussian Channel

Lattice Code Mutual information when using a Lattice
Gaussian Code is [Ling & B., 13]

The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping

Instead of using two nested lattices (coding +
shaping), use only one lattice. Each point is 1 6c
sampled according to Gaussian discrete Ip > = log (1+ SNR) — —
probability. 2 n

v

where ¢ is related to the flatness factor of the

lattice.
Power ‘

The power of the lattice code is

16,
nm Ox(y)

evaluated at y = ﬁg

TELECOM
ParisTe
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The Gaussian Wiretap Channel
Discrete Gaussian Sampling
Discrete Gaussian Shaping

_ Discrete Gaussian Shaping Rare axp Powen

Lattice Code

Instead of using two nested lattices (coding +
shaping), use only one lattice. Each point is
sampled according to Gaussian discrete
probability.

Power

| A

The power of the lattice code is

_ 19,
nm Oa(y)

1

evaluated at y = 57

~

30 30 July 2015 J.-C. Belfiore Lattice Codes: A theta series perspective

Lattice Gaussian Coding achieves the
capacity of the Gaussian Channel
Mutual information when using a Lattice

Gaussian Code is [Ling & B., 13]
6e

1
Ip > 5 log (1 + SNR) —

where ¢ is related to the flatness factor of the

lattice.
4

Rate of the code

The rate (entropy) is,

(16;0)

T OA(y)
evaluated at y =

1

+ log @A(}/)>

n

_1
202"

)
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Theta Series
Flatness factor Even Unimodular Lattices
Some problems involving theta series Even ¢ —modular Lattices

Computation of theta series
_ Outline

Computation of theta series
Even Unimodular Lattices
Even /—modular Lattices

=

ech

F
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Unimodular lattices

Definition

A lattice A of rank n is unimodular if
> A is integral, i.e. its Gram matrix B = AT -A€GL, (2).
» A =A*

ari
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Unimodular lattices

Definition

A lattice A of rank n is unimodular if
> A is integral, i.e. its Gram matrix B = AT -A€GL, (2).
» A =A*

Z" is unimodular, Eg and A4 (Leech lattice) are unimodular.

Definition

Moreover, if the square length of any point of A is an even integer, then A is an even
unimodular lattice. Eg and Ay4 are even unimodular.

=
h
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Theta series as modular forms

Since A = A* (and Vol (A) = 1), we get from Jacobi’s identity,

o (1) = (D) ern.

From the periodicity of the theta series, and since A is even,

OA(T+1)=04(7).
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Theta series as modular forms

Since A = A* (and Vol (A) = 1), we get from Jacobi’s identity,

o (1) = (D) ern.

From the periodicity of the theta series, and since A is even,

OA(T+1)=04(7).

|

Action of PSL; (Z)
The group generated by 7 — 741 and 7 — —% acts on the theta series of an even
unimodular lattice. This group is PSL> (Z). So, for any |: i Z ] ,ad —bc=1in

SLy (Z), if Ais an even unimodular lattice, we have,

a +b n
on (ZE2) = (er+ )t on(r)

which means that ©x (1) is a modular form of weight 7 for the “full" group SL; (Z).

TELECOM
ParisTech
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Theta series of Eg: A Modular form approach

Structure

The set of modular forms of weight k,
My (SL (Z)) is a vector space of dimension 0
if k < 4 and of dimension 1 when k = 4.

Eisenstein

Modular forms of weight 4 are proportional to
the Eisenstein series

Ei(q) =1+240 ) o3(m)g*"

m=1

where o3(m) is the sum of the cubes of the
divisors of m.

TELECOM
ParisTech
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Theta series of Eg: A Modular form approach

Structure

The set of modular forms of weight k, The first even unimodular lattice is of
My (SL (Z)) is a vector space of dimension 0 | dimension 8 and its theta series is
if k < 4 and of dimension 1 when k = 4.

< E4(q) =1+ 2404° + 2160q* + 6720¢° + - - -
v
.
Modular forms of weight 4 are proportional to The Eg lattice

the Eisenstein series There is one even unimodular lattice of
dimension 8, Eg with theta series,

Ei(q) =1+240 ) o3(m)g*" o
m=1 eEs (q) = E4(q) =1+ 240 Z 03(m)q2'"

where o3(m) is the sum of the cubes of the m=1 y

divisors of m.
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Theta series of Eg: A Coding approach

Jacobi theta functions

Define
+o00 )
93(q) = > ¢ =64(q)
k=—o00
+o0 12
() = Y a2 =e,1(q)
k=—o00

and consider construction A,
A = 278 4C(8,4)r,

= J @z +x)

xeC

We get

On(q) = Z Oz 1x(9)

xeC
o TELECOM
ParisTech

20/30 30 July 2015 J.-C. Belfiore Lattice Codes: A theta series perspective = ml




Theta Series

Flatness factor Even Unimodular Lattices

Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Theta series of Eg: A Coding approach

Jacobi theta functions

Define We have
oo ©uz8(q) = 93 (q4)
93(q) = Z qk2 =0z(9q) and more generally,
k=—o00
9 _ I (k+%)2 _5 Oz x(q) = V3 (q4)n_W(X) V2 (q4)W(X)
2(a) = k:z—:oo 7 B Z+%(q) where w (x) is the Hamming weight of x. |

and consider construction A,
A = 278 4C(8,4)r,

= J @z +x)

xeC

We get

On(q) = Z Oz 1x(9)

xeC

o TELECOM
ParisTech
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Theta series of Eg: A Coding approach

Jacobi theta functions

Define We have
= ©,8(q) = 95 (a*)
@) = Y d“ =) and more generally,
k=—oo
= (k+1)? O2z8.1x(q) = U3 (¢%)" "™ 9, (g%)" ™
va(q) = D gt = Oz+1(a)

P where w (x) is the Hamming weight of x.
v

and consider construction A, .
Eg again

A = 278+4C(8,4
(8 4)r, Let we(x,y) = x® + 14x*y* + y® be the
= U (228 + x) Hamming weight enumerator of C, A has
xeC theta series,
Onq) = we(93(q"),92(q"))
We get — 14 240q* + 2160q°® + 6720¢'2 +} -
Oa(q) = Z O278.x(q) In fact, A = v/2E;g.
xeC
o TELECOM

ParisTech
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Some problems involving theta series
Computation of theta series

_ Extremal Lattices

The theta series of an even unimodular
lattice, ©p(q) is an isobaric polynomial in E4
and Ayq where

a[[@a-qm*

m=1

Aoa(q)

q —24g% +252¢° — - - -

is the Ramanujan form (of weight 12).

More precisely, let n = 24m + 8k, with
k € {0,1,2};

m
On = EJmth 1 3 g XM AL,
j=1

21/30 30 July 2015 J.-C. Belfiore Lattice Codes: A theta series perspective ;g

Even Unimodular Lattices

Even ¢

modular Lattices

T!‘—:LECDM
ar




Theta Series

Flatness factor Even Unimodular Lattices

Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Extremal Lattices
Lesch ltice faq

The theta series of an even unimodular We get
lattice, ©p(q) is an isobaric polynomial in E4
and A4 where Ony = E43 4+ a1 Aoy
o = 14+q°(a1+720)+-
A _ 1— g™ 24
24(q) q’g( a") In order to maximize the minimum distance,
— q- 24q2 4 252q3 o we choose a; = —720, which gives
S = E; 7204
is the Ramanujan form (of weight 12). Ao 4 2
> = 1+ 196560q* + 16773120q° + - - -
v

More precisely, let n = 24m + 8k, with
k € {0,1,2};

m
On = EJmth 1 3 g XM AL,
j=1

TELECOM
ParisTech
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Some problems involving theta series
Computation of theta series

_ Extremal Lattices

The theta series of an even unimodular
lattice, ©p(q) is an isobaric polynomial in E4
and Ayq where

a[[@a-qm*

m=1

Aoa(q)

q —24g% +252¢° — - - -

is the Ramanujan form (of weight 12).

More precisely, let n = 24m + 8k, with
k € {0,1,2};

m
On = EJmth 1 3 g XM AL,
j=1

Even Unimodular Lattices
Even ¢ —modular Lattices

Leech lattice Aos

We get
S/

In order to maximize the minimum distance,

E} + a1404
14 ¢* (a1 +720) + - -

we choose a; = —720, which gives

Ony =

E} — 720024

1+ 196560g* + 167731206° + - - -
v

The minimum distance of an even unimodular

lattice is upperbounded,

2
dmin

<2m+2.

Extremal lattices achieve this bound.

y

21/30 30 July 2015 J.-C. Belfiore Lattice Codes: A theta series perspective =
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ /—modular lattices

A lattice A of rank n is {—modular if
> A is integral, i.e. its Gram matrix B = AT -AeGL, (z).

> There exists a similarity ¢ (isometry + scaling) of similarity factor equal to £ such
that

P (A*) =Aand <90(x)’ QD(X)> =/ (x» Y> , Vx,y € R".

> Moreover, if the square length of any point of A is an even integer, then A is an
even {—modular lattice.

TELECOM
ParisTe
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ /—modular lattices

A lattice A of rank n is {—modular if
> A is integral, i.e. its Gram matrix B = AT .AcGL, (z).

> There exists a similarity ¢ (isometry + scaling) of similarity factor equal to £ such
that

P (A*) =Aand <90(x)’ ‘P(X)> =/ (X’ Y> , Vx,y € R".

> Moreover, if the square length of any point of A is an even integer, then A is an
even {—modular lattice.

D4 and A are 2—modular, Az and Kiz are 3—modular, the MaaB lattice (n = 8) is
5—modular, the Barnes lattice (n = 6) is 7—modular. All are even.

Property

The determinant of a £—modular lattice is £2 .
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Extremal Lattices

When o1 (¢) divides 24, the theta series of a (strongly) even {—modular lattice, ©x(q)
is an isobaric polynomial in ©g min(q) and A.(q) where

_24
A(q) = []n(em=®
m|£

n(q) = qu4 J(?il (1- ¢/) is the Dedekind eta function and ©; min(q) is the theta
series of the smallest (strongly) even /{—modular lattice.

TELECOM
ParisTe
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Extremal Lattices

When o1 (¢) divides 24, the theta series of a (strongly) even {—modular lattice, ©x(q)
is an isobaric polynomial in ©¢ min(q) and Ay(q) where

Ada) = [[n(em7®

m|£

n(q) = qu4 Hjoil (1 — qf) is the Dedekind eta function and © nin(q) is the theta
series of the smallest (strongly) even /{—modular lattice.

v
Examples

Here are the smallest even (strongly) £—modular lattices when o1 (£) divides 24:

L 1 2 3 5 7 11 23
n 8 4 2 4 2 2 2

[ Mo [ B [ 00| 22 | Qo | 2[] | 2[Bo ] [ 2] |

Table : Smallest even modular lattices (¢ prime)
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Extremal Lattices

When o1 (¢) divides 24, the theta series of a (strongly) even {—modular lattice, ©x(q)
is an isobaric polynomial in ©¢ min(q) and Ay(q) where

Ada) = [[n(em7®

m|£

n(q) = qu4 Hjoil (1 — qf) is the Dedekind eta function and © nin(q) is the theta
series of the smallest (strongly) even /{—modular lattice.

v
Examples

Here are the smallest even (strongly) £—modular lattices when o1 (£) divides 24:

L 6 14 15
n 4 4 4

e [ e[ [ v o] | e

’ Al,min

Table : Smallest even strongly modular lattices (¢ composite)
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ ¢/—Modular Lattices (¢ = 3)

Smallest Lattice

Hexagonal lattice A, with theta series,

O, (q) = 93 (¢°) 93 (¢°) + 92 (a°) 92 (a°)

and
23(q) = [n(a)n (¢*)]°

Example: ¢ =3

More precisely, let n = 12m + 2k, with
k€{0,1,2,3,4,5};

m
en =05+ aefm AL
j=1

TELECOM
Sarisiec]

; sTech
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ ¢/—Modular Lattices (¢ = 3)
Smallest Lattice Coxeter Todd Kio

Hexagonal lattice Ay with theta series, We get
e = 05 A
O, (q) = 93 (qz) 93 (qﬁ) + 0, (qz) Do (q6) K2 A, T a143
= 1+¢*(a1+36)+---
and 6
As(q) = [n(q)n (¢%)] In order to maximize the minimum distance,
we choose a; = —36, which gives
. 6
Example: /=3 Ok, = Oy, —364;
More precisely, let n = 12m + 2k, with = 1+ 756q" + 4032¢° + 20412¢% + |- -
v

k €{0,1,2,3,4,5};

m
en =05+ aefm AL
j=1

TELECOM
ParisTech
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ ¢/—Modular Lattices (¢ = 3)
Smallest Lattice Coxeter Todd Kio

Hexagonal lattice Ay with theta series, We get
e = 05 A
O,(a) = 93 (¢7) 93 (¢°) + 02 () 02 (°) # T ol
= 1+¢*(a1+36)+---
and 6
As(q) = [n(q)n (¢%)] In order to maximize the minimum distance,
we choose a; = —36, which gives
. 6
Example: /=3 Ok, = Oy, —364;
More precisely, let n = 12m + 2k, with = 1+ 756q" + 4032¢° + 20412¢% + |- -
k€{0,1,2,3,4,5}; ol
m Nk The minimum distance of an even 3—modular
Op = @g;wk + Z aj@igm_1)+ A lattice is upperbounded,
j=1
d2. <2m+2.
v

TELECOM
ParisTech
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Computation of theta series

_ Modular lattices ¢/ = 3

Let ¢ = Hy=3

. Then, construction
V2N =2Z[(]" +C (n, k)g,

gives an Hermitian Z [¢] —lattice. Its trace
lattice is a Z—lattice which is 3—modular
when C is self dual (with k = 7) for the

Hermitian product over F4 (d?. (A) < 4).

min

Mapping

We have Z[(] /2Z [¢] ~ F4 since 2 is inert.

Fyq 01 w] w?
zlgg/ezg [[o[1] ¢ ] ¢
Wf: 0|21 2 2

Table : Coset representatives

TELECOM
ParisTech
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_ Modular lattices ¢/ = 3

Let ¢ = Hy=3

. Then, construction
V2N =2Z[(]" +C (n, k)g,

gives an Hermitian Z [¢] —lattice. Its trace
lattice is a Z—lattice which is 3—modular
when C is self dual (with k = 7) for the

Hermitian product over F4 (d?. (A) < 4).

min

Mapping

We have Z[(] /2Z [¢] ~ F4 since 2 is inert.

Fyq 01 ]w]w?
zlgg/ezg [[o[1] ¢ ] ¢
Wf: 0|21 2 2

Table : Coset representatives

Even Unimodular Lattices
Even £ —modular Lattices

Construction of Kis

Let C be the (6, 3) hexacode over F4. Then,
the trace lattice of

27[¢1° + € (6,3)y,

is equivalent to Ki».

TELECOM
ParisTech
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Modular lattices ¢/ = 3

Let ¢ = Hy=3

. Then, construction

Construction of Kis

V2A =27 [€1" +C (n, k)JF4 Let C be the (6, 3) hexacode over F4. Then,

. . i the trace lattice of
gives an Hermitian Z [¢] —lattice. Its trace

lattice is a Z—lattice which is 3—modular 27, [C]6 +C (673)15‘
when C is self dual (with k = 7) for the ¢

Hermitian product over [y (dr%\in (N) <4). is equivalent to Kio. )
Mapping
We have Z[¢] /2Z [¢] ~ Fy4 since 2 is inert Self dual MDS code of length 6 over F4 with
- ' generator matrix,
Fyq 01 ]w]w?
1 0 0 1 w w
7
ZId /221 8 ; g 42 G=|0 1 0 w 1 w
Y 0 0 1 w w 1

Table : Coset representatives

TELECOM
ParisTech
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Computation of theta series

_ Ki2: From weight enumeration to theta series

Embedding
Fy 01wl w?
Z[J/ezi] [[o [ 1] ¢ [ ¢
wZ 0222

Table : Coset representatives
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Some problems involving theta series
Computation of theta series

_ Ki2: From weight enumeration to theta series

Embedding

E

Fy 01wl w?
ZI/22 [[0[1] ¢ | &
w2 0|2 2 2

Table

. Coset representatives

v

Cosets theta series

> Coset 0 has theta series

0-0(q) = 93 (¢*) 93 (¢"%)+92 (¢*) 92 (¢™?)

» Other cosets have theta series

040(q) = V2 (¢*) 93 (¢"%)+93 (¢*) 92 (¢"?)

4

Even Unimodular Lattices
Even £ —modular Lattices

TELECOM
ParisTech
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Ki2: From weight enumeration to theta series

Embedding

Fy 01wl w?
ZI/22 [[0[1] ¢ | & Hexacode
Wz 0|22 2

Hamming weight enumerator is

Table : Coset representatives s
wy (x,y) = x5 +45x2y* + 18y5

Cosets theta series
» Coset 0 has theta series
0-0(q) = 93 (¢*) 93 (¢"%)+92 (¢*) 92 (¢™?)
» Other cosets have theta series

040(q) = V2 (¢*) 93 (¢"%)+93 (¢*) 92 (¢"?)

4

TELECOM
arisTec]

F iTech
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Even Unimodular Lattices
Even £ —modular Lattices

_ Ki2: From weight enumeration to theta series

Embedding

Fy 01wl w?

zid/zd [[o 1] ¢ | ¢

WE— 0|21 2 2
Table : Coset representatives

v

Cosets theta series

» Coset 0 has theta series

0-0(q) = 93 (¢*) 93 (¢"%)+92 (¢*) 92 (¢™?)

» Other cosets have theta series

040(q) = V2 (¢*) 93 (¢"%)+93 (¢*) 92 (¢"?)

4

26/30 30 July 2015 J.-C. Belfiore

Hexacode

Hamming weight enumerator is

wh (x,y) = x® + 45x%y* + 18y°

y

We get
Oy,(q) wi (0=0(q), 00(q))
= 14756q% +4032¢° + - --
ParisTech
Lattice Codes: A theta series perspective i' ml




Theta Series

Flatness factor Even Unimodular Lattices

Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ ¢/—modular lattices ({ =7)

Smallest Lattice

Lattice Ap7 = Z [L 577] with theta series,

On,,(q) =3 (¢°) 93 (¢"*) + 92 (¢°) V2 (¢*)

and

A7(q) = [n(q)n ()]

4

Example: ¢ =7

More precisely, let n = 6m + 2k, with
k €{0,1,2};

_ ©3m+k m—j) +k
On = e/\2,7 + Za e/\z 7

TELECOM
ParisTech
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Some problems involving theta series
Computation of theta series

_ ¢/—modular lattices ({ =7)

Even Unimodular Lattices
Even £ —modular Lattices

Smallest Lattice Barnes lattice Pg

Lattice Ao7 =7Z [L V2_7] with theta series,

On,,(q) =3 (¢°) 93 (¢"*) + 92 (¢°) V2 (¢*)

and

[n(q)n (a")]°

Example: ¢ =7

More precisely, let n = 6m + 2k, with
k € {0,1,2};

Az(q) =

mj+k
N7

e,\:ef\gjijrZae

We get
ep6 = 6%2,7 +a147

1+q*(a1+6)+-

In order to maximize the minimum distance,
we choose a; = —6, which gives

Op, = e/\z 7
= 1+42g* +56¢° +84¢% + 168q'° 4 -
v

6A7

TELECOM
ParisTech
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Some problems involving theta series
Computation of theta series

_ ¢/—modular lattices ({ =7)

Even Unimodular Lattices
Even £ —modular Lattices

Smallest Lattice Barnes lattice Pg

Lattice Ao7 =7Z [L V2_7] with theta series,

On,,(q) =3 (¢°) 93 (¢"*) + 92 (¢°) V2 (¢*)

and

[n(q)n (a")]°

Example: ¢ =7

More precisely, let n = 6m + 2k, with
k € {0,1,2};

Az(q) =

mj+k
N7

e,\:ef\gjijrZae

We get
ep6 = 6%2,7 +a147

1+q*(a1+6)+-

In order to maximize the minimum distance,
we choose a; = —6, which gives

Op, = e/\z 7
= 1+42g* +56¢° +84¢% + 168q'° 4 -
v

6A7

The minimum distance of an even 7—modular
lattice is upperbounded,
d2

min

<2m+2.

y
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Flatness factor Even Unimodular Lattices

Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Modular lattices ¢/ =7

Let a = V=7 V277 Then, construction

V2A = 2Z[a]” + C (n)g, 5,

gives an Hermitian Z [a] —lattice. Its trace
lattice is a Z—lattice which is 7—modular
when C is self dual for the Hermitian product
over F2 x F, (d2, (A) < 4).

We have Z[a] /2Z [a] ~ F2 x F since 2 is split in Z [a].

F, x I3 0=(00,00 [I=(L,1) | (1,0) ©,1)
Z o] [2Z ] 0 1 o l-a=a&
w2 0 2 Z Z

Table : Coset representatives
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Theta Series

Flatness factor

Some problems involving theta series
Computation of theta series

_ Modular lattices ¢/ =7

Construction A

Let a = V=7 V277 Then, construction

V2A = 2Z[a]” + C (n)g, 5,

gives an Hermitian Z [a] —lattice. Its trace
lattice is a Z—lattice which is 7—modular
when C is self dual for the Hermitian product
over F2 x F, (d2, (A) < 4).

Even Unimodular Lattices
Even £ —modular Lattices

Construction of Pg

There exists a self dual code C over Fy x Fy
such that the trace lattice of

2z o]’ +C (3)r, <7,

is equivalent to Pe.

C (3)]Fg xIFy

Self dual code of length 3 over Fy x Fp
defined by using the binary parity-check codes
for the first bit and the repetition code for the
second one.

v
We have Z[a] /2Z [a] ~ F2 x F since 2 is split in Z [a].
Fo x Fo 0=(0,0) | 1=(1,1) | (1,0) (0,1)
Z o] [2Z o] 0 1 o l-a=a&
WE 0 2 4 4

Table : Coset representatives
TELECOM
ParisTech
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Computation of theta series

_ Ps: From weight enumeration to theta series

Cosets theta series

> Coset 0 has theta series

00(q) = 93 (a*) 93 (a°®)+92 (a*) V2 (a°°)

> Coset 1 has theta series

01(q) = 92 (¢*) 93 (¢°®) +93 (q*) V2 (¢°®)

> Other cosets have theta series

0a(a) = 392 () 92 ()

o

F; x I 0=(0,0) [1=@L1 | (Lo [ (1)
Z[a] /2Z [a] 0 1 a l—a=a
wi 0 2 4 4

Table : Coset representatives
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Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

_ Ps: From weight enumeration to theta series

Cosets theta series

> Coset 0 has theta series

00(q) = 93 (¢*) 93 (¢°°)+92 (g*) 92 (¢%°)

Code over Fy x Fy

Symmetrized weight enumerator is

swe (x,y,z) = x>+ 3y%z + 3xz2 + 2°

> Coset 1 has theta series

01(q) = 92 (¢*) 93 (¢°®)+93 (q*) 92 (¢*°)

> Other cosets have theta series

0a(9) = 592 (a) 92 (a)

v

F, x F> 0=(0,0) [I=(L,1 [ (1,0) ©,1)
Z[a] [2Z [a] 0 1 a l—a=a
wZ 0 2 4 4

Table : Coset representatives
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Even Unimodular Lattices
Even £ —modular Lattices

_ Ps: From weight enumeration to theta series

Cosets theta series

X
> Coset 0 has theta series Code over IF, X I3
Symmetrized weight enumerator is
00(q) = 93 (a*) 93 (a°®)+92 (a*) V2 (a°°) s . s
swe(x,y,z) =x>+3y“z+3xz"+z
» Coset 1 has theta series ~
01(q) =72 (g*) 93 (¢°®)+93 (g*) Y2 (¢°®)] We get
> Other cosets have theta series Op,(q) = swe(fo(q),61(q),0a(q))
1 = 1442¢* 6 +84g% +---
0a(q):§192(q)192 (q7) + 429" 4+ 56q° + 84q9° + )
Fo x I 0=(0,0) | 1=(1,1) | (1,0) (0,1)
Z[a] [2Z [a] 0 1 a l—a=a
wi 0 2 4 4
Table : Coset representatives
TELECOM
ParisTech
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Theta Series

Flatness factor Even Unimodular Lattices

Some problems involving theta series Even ¢ —modular Lattices
Computation of theta series

N conciusion

> The importance of theta series in Communications is increasing.

> Need of better understanding of theta series.

e OIE P ——— =
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