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Motivation

Codes with locality or Locally Repairable Codes (LRCs) allow to recover
one erased code symbol using only a few other symbols.

LRCs can be applied in
• distributed storage systems for repairing multiple disk failures
• and also for management of hot data.
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Codes

A code C is a set of codewords c = (c1, c2, . . . , cn) over a finite field Fq.

Code distance d is the minimum Hamming distance between different
codewords.

The code C is linear [n, k]-code if it is Fq-linear subspace of Fn
q.

Generator matrix G of a linear [n, k]-code is a k × n matrix over Fq, such
that rows of G form a basis of C.

Encoding: c = uG , where u is an information vector of length k.

Systematic encoding using systematic G = (Ik ,P), then c = uG = (u,p).

A parity check matrix is H = (−PT , In−k) and for all c ∈ C holds cHT
= 0.
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Codes with locality

A code symbol ci has repair locality r if it can be recovered by accessing
at most r other symbols. The set of indexes of those symbols is called
repair set R. E.g. for r = 2 and R = {2,3}, i = 1:

c1 = c2 + c3.

A linear code has information locality r if every information symbol has
locality r . A single erasure can be recovered. What if more erasures?

A code symbol ci has (r , t)-locality if there exist t disjoint repair sets Rj
for ci , each containing at most r symbols. E.g. for r = 2, t = 2, and
R1 = {2,3}, R2 = {4,5}:

c1 = c2 + c3,

c1 = c4 + c5.
(1)

A linear code has information locality (r , t) if every information symbol
has locality (r , t). This code can correct up to t erasures and hence
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Upper bound for the code distance

Lemma
The distance d of [n, k] code with information (r , t)-locality satisfies

d ≥ t + 1.
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Connection with majority logic decoding

Orthogonal parity checks for c1, t = 2 checks:

c1 = c2 + c3,
c1 = c4 + c5,
c1 = c1.

(2)

Symbol can be corrected by majority logic decoder if there were up to t
erasures or up to t/2 errors.

If every (information) symbol has at least t orthogonal parity checks then
the code has distance d ≥ t + 1. The code corrects up to t erasures or up
to t/2 errors by majority logic decoder.

Some known codes with majority logic decoding: Reed-Muller codes,
codes based on finite geometries.

We will use finite geometries to design codes with locality.
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Upper bound for the code distance

To simplify decoding we require that each repair set contains a single
parity symbol only.

Lemma ([RPDV16])
Let C be an [n, k] code with information (r , t)-locality such that each
repair set contains a single parity symbol. Then the code distance is
bounded by

d ≤ n − k − ⌈

kt
r
⌉ + t + 1. (3)

Can we reach this bound?

[RPDV16] Rawat, A.S., Papailiopoulos, D.S., Dimakis, A.G., Vishwanath, S.: Locality and
availability in distributed storage. IEEE Transactions on Information Theory 62(8), 4481–4493,
2016.
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Partial geometry

Definition ([CD96])
A (finite) partial geometry is an incidence structure S = (P, L, I) in
which P is a set of points p, L is a set of lines ` and I is a symmetric
point-line incidence relation satisfying the following axioms:

1 Each point p is incident with u + 1 lines(u ≥ 1), and two distinct
points are incident with at most one line.

2 Each line ` is incident with s + 1 points(s ≥ 1), and two distinct lines
are incident with at most one point.

3 Given a point p not incident with a line `, there are exactly α lines
incident with p and also with some point of `.

Such a partial geometry will be denoted by PG(s + 1, u + 1, α).
Parameter α is called connection number.

[CD96] Colbourn, C.J., Dinitz, J.H.: Handbook of combinatorial designs. CRC Press (1996).
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Fano plane
Well known examples of partial geometries are Euclidean and projective
geometries over finite fields.
The Fano plane [F1892] is the finite projective geometry with the
smallest number of points and lines: 7 points and 7 lines, with 3 points
on every line and 3 lines through every point.

Figure 1: Partial geometry PG(3,3,3)

[F1892] Gino Fano, (1892), ”Sui postulati fondamentali della geometria proiettiva”, Giornale di
Matematiche, 30: 106–132.
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New partial geometry [DLLB2015]
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Figure 2: Partial geometry PG(3,3,2)

[DLLB2015] Qiuju Diao,Juane Li, Shu Lin, Ian Blake, New Classes of Partial Geometries and Their
Associated LDPC Codes, arXiv: 1503.06900v1 [cs.IT] 24 Mar 2015
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Number of points and lines

Let P = ∣P ∣ and L = ∣L∣, then [CD96]

P =

(s + 1)(su + α)
α

, L =

(u + 1)(su + α)
α

. (4)

[CD96] Colbourn, C.J., Dinitz, J.H.: Handbook of combinatorial designs. CRC Press (1996).
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Incidence matrix N of PG(3,3,2)

N =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p1 p2 p3 p4 p5 p6 p7 p8 p9

`1 1 0 0 1 0 0 1 0 0
`2 0 1 0 0 1 0 0 1 0
`3 0 0 1 0 0 1 0 0 1
`4 1 0 0 0 1 0 0 0 1
`5 0 1 0 0 0 1 1 0 0
`6 0 0 1 1 0 0 0 1 0
`7 1 0 0 0 0 1 0 1 0
`8 0 1 0 1 0 0 0 0 1
`9 0 0 1 0 1 0 1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5)
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p9

N was used as parity check matrix H. 15
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Dual geometry. Some known geometries.

The dual of a partial geometry PG(s + 1, u + 1, α) is obtained by
exchanging the set of points and the set of lines, which is also a partial
geometry PG(u + 1, s + 1, α) with incidence matrix N⊥ = NT .

Up to duality, parameters of some known partial geometries are [CD96]:
Type 0: s = w , u = wm−1

− 1, α = w , with m ≥ 2 and w is a power of
prime;

Type 1: s = 2h
− 2m, u = 2h

− 2h−m, α = (2h−m
− 1)(2m

− 1), 1 ≤ m ≤ h;
Type 2: s = 2h

− 1, u = (2h
+ 1)(2m

− 1), α = 2m
− 1, 1 ≤ m ≤ h;

Type 3: s = 22h−1
− 1, u = 22h−1, α = 22h−2, 1 < h;

Type 4: s = 32m
− 1, u = (34m

− 1)/2, α = (32m
− 1)/2, m ≥ 1;

[CD96] Colbourn, C.J., Dinitz, J.H.: Handbook of combinatorial designs. CRC Press (1996).
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New codes

Given L × P incidence matrix N of PG(s + 1, u + 1, α), we define a code
C(s+1, u+1, α) over Fq by the following binary systematic generator matrix

G = [IL∣N]. (6)

Theorem
The q-ary linear code C(s+1, u+1, α) over Fq is an [n, k] locally repairable
code with information (r , t)-locality, where n = L + P, k = L, r = u + 1,
t = s + 1. The code distance d = s + 2 reaches the upper bound (3).

Remark: The q-ary code over a field Fq of characteristic 2, q = 2m, is the
interleaving of m binary codes, since both G and H are binary matrices.
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Example of a new code

Let N be the incidence matrix of PG(3,3,2) see (5). Then the code
C(3,3,2) has the parity check matrix H = (NT ,−IL), defined by (6), as
follows:

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1 0 0 1 0 0 1 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 −1 0 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0 0 0 −1 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 −1 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 −1 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 −1 0
0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

and we have [n = 18, k = 9] locally recoverable code over Fq with
information (r = 3, t = 3)-locality and distance d = 4.

For the first information symbol the repair relations with a single parity
symbol are: c1 = c10 − c4 − c7 = c13 − c6 − c8 = c16 − c5 − c9.
Every repair set includes only one parity check symbol.
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New optimal codes

Theorem

1 For partial geometry of Type 0 the code C(s+1, u+1, α) is
[n = wm−1

(wm−1
+w + 1), k = w2(m−1), d = w + 2] with information

(r = wm−1, t = w + 1)-locality.
2 For Type 1 we get [n = 2(2h

+ 1)(2h
− 2m−1

− 2h−m−1
+ 1), k =

(2h
+ 1)(2h

− 2h−m
+ 1), d = 2h

− 2m
+ 2] code with information

(r = 2h
− 2h−m

+ 1, t = 2h
− 2m

+ 1)-locality.
3 Type 2: [n = 2m+2h

(2h
+ 1), k = 2m+2h

(2h
− 2h−m

+ 1), d = 2h
+ 1]

code with information (r = 2m
(2h
− 2h−m

+ 1), t = 2h
)-locality.

4 Type 3: we get [n = 24h
− 1, k = (22h−1

+ 1)(22h
− 1), d = 22h−1

+ 1]
code with information (r = 22h−1

+ 1, t = 22h−1
)-locality.

5 Type 4: [n =
34m
(32m

+1)2
2 , k =

34m
(34m

+1)
2 , d = 32m

+ 1] code with
information (r = 34m

+1
2 , t = 32m

)-locality.

All codes reach the bound (3) and have rates k/n =
1

1+t/r .
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Conclusions

• From partial geometries, we constructed a class of q-ary locally
recoverable codes (LRC) with new parameters, which are optimal
with respect to the upper bound (3).

• New geometries will give new codes.
• Future work: Design efficient decoders correcting more than d/2

errors (and erasures) using interleaved structure of the codes.

Thank you!
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