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Compressed Sensing Basics

Given are the linear measurements

y[m] = A[m×n] · x[n] + w[m] with m < n (1)

with A the known m × n sensing matrix and w the m × 1 Gaussian measurement noise vector

recover vector x from the measurements y given A and knowledge about the structure of x

Use sampling rate m/n appropriate for the structure within the signal

Typical structure: few components of x non-zero sparsity

More complicated/general “structure” can be exploited by a prior pdf used for recovery

Classical solution of recovery problem: L1-norm minimization by convex optimization

Greedy schemes such as Orthogonal Matching Pursuit and Hard/Soft Thresholding better for larger

dimensions

Much better and much more efficient solution by Bayesian Approximate Message Passing (BAMP),

as signal prior pdf can be exploited
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Practical Relevance of Compressed Sensing

Systematic approach for many problems in Signal Processing & Communications

source coding of structured (sparse) signals: sampling rates far below the classical theorem

de-noising (images, audio, speech)

inpainting (images, audio)

blind deconvolution, e.g. de-reverberation

radar signal processing (target detection)

channel estimation (multipath propagation with few dominant paths)

signal detection in M2M communication (sparse user activity patterns)

joint channel estimation and data detection (recent bilinear approaches)

RFID tag detection

Single-Pixel Imaging: CS-based THz camera (airport body scanners)

For more applications (and lots of theory), see (long!) list at http://dsp.rice.edu/cs

Key problem: complexity for “big problems” iterative recovery such as BAMP
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Compressed-Sensing Recovery as an Estimation Problem

Noisy Compressed Sensing:

y[m] = A[m×n] · x[n] + w[m] with m < n

known: observation vector y, measurement matrix A (full rank m assumed)

random measurement noise vector w; variances σ2
wq

of noise samples wq, q = 1, ...,m known

to be recovered: signal vector x; pdf assumed to be known

Goal: find estimate x̂ that minimizes MSE:

x̂ = argmin
x̃

EX

{

‖X − x̃‖2
2

∣
∣
∣Y = y

}

well-known solution from estimation theory: conditional expectation, given observations y:

x̂ = EX

{

X

∣
∣
∣Y = y

}

Bayes’ rule:

x̂ =

∫

Rn
x pX|Y(x|y)dx =

1

pY(y)

∫

Rn
x pY|X(y|x)

︸ ︷︷ ︸
measurement noise

pX(x)
︸ ︷︷ ︸
signal prior

dx (2)

Impossible to realize in practice!
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Bayesian Approximate Message Passing (BAMP)

Approximate solution of (2): “Loopy” Message Passing

based on a graphical model of the measurement process

Derivation in Donoho et al. (2009), Donoho et al. (2011), Donoho et al. (2010a), Donoho et al.

(2010b) and Eldar & Kutyniok (2012, Chapter 9), Montanari (2011).

Formal proof in Bayati & Montanari (2011)

Derivation is complicated and contains several assumptions, including large m,n

In what follows Z-BAMP: derived in Birgmeier & Goertz (2018); Goertz & Birgmeier (2019) from

intermediate step of derivation of the conventional BAMP scheme

Measurement matrix may contain (possibly many) zero-elements

Measurement noise variances σ2
wq

may be different for all measurements yq, q = 1, 2, ...,m

Unit Euclidean norms of columns of the measurement matrix A assumed
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Z-BAMP for Measurement Matrices with Zero-Elements

Sets of indices i of signal components xi that are connected to the measurements yq, q =

1, 2, ...,m by the components Aqi of the measurement matrix A:

Nq
.
= {i ∈ {1, 2, ..., n} : Aqi 6= 0} (3)

Sets of the indices q of measurements yq that take measurements of the signal components

xi, i = 1, 2, ..., n:

Mi
.
= {q ∈ {1, 2, ...,m} : Aqi 6= 0} (4)

Integer mi = |Mi| is the number of elements in the set Mi.

Columns normalized to unit Euclidean norm: approximation A2
qi ≈ 1

mi
for q ∈ Mi and all i.

Start Z-BAMP at iteration t = 0 with the initializations (prior pdf used):

x̂
0
i = µXi

=

∫ ∞

−∞
xi pXi

(xi)dxi i = 1, 2, ..., n (5)

σ
2(0)
i =

∫ ∞

−∞
(xi − µXi

)
2
pXi

(xi)dxi i = 1, 2, ..., n (6)

z
0
q = yq, q = 1, 2, ...,m (7)
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... Z-BAMP for Measurement Matrices with Zero-Elements: Key equations

Compute total noise variance at measurement nodes q = 1, ...,m

S
t−1
q = σ

2
wq

+
∑

i∈Nq

1

|Mi|
σ

2(t−1)
i Nq: signal components i connected to measurement q (8)

Compute effective noise variance ci and substitute measurement ui for variable nodes i = 1, ..., n

1

ct−1
i

=
1

|Mi|
∑

q∈Mi

1

St−1
q

Mi: measurements q connected to signal component i (9)

u
t−1
i = c

t−1
i

∑

q∈Mi

Aqi

1

St−1
q

z
t−1
q + x̂

t−1
i (10)

Compute the signal-component estimates and the error variances

x̂
t
i = Fi

(
u
t−1
i , c

t−1
i

)
σ

2(t)
i = c

t−1
i F

′
i

(
u
t−1
i , c

t−1
i

)
(11)

Compute residual zq for the measurement nodes q = 1, ...,m

z
t
q = yq −

∑

i∈Nq

Aqi x̂
t
i +

zt−1
q

St−1
q

∑

i∈Nq

1

|Mi|
σ

2(t)
i (12)

Stop, if
∑n

i=1

(
x̂t
i − x̂t−1

i

)2
< ε2

∑n
i=1

(
x̂t
i

)2
; otherwise, continue with (8) for t := t + 1.
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Due to column−normalization:

factor−to−variable messages variable−to−factor messages

Due to column−normalization:

x̂t−1
1 x̂t−1

2 x̂t−1
3 x̂t−1

4 x̂t−1
5 x̂t−1

6

y1 y2 y3

A34
A24

σ
2(t−1)
1 σ

2(t−1)
6σ

2(t−1)
5σ

2(t−1)
4σ

2(t−1)
3σ

2(t−1)
2

σ2
w1

σ2
w2

σ2
w3

x̂t
4 x̂5 x̂6

y1 y2 y3

σ
2(t)
3

x̂t
3

σ
2(t)
4

|A23| =
1√
m3

= 1√
2

x̂1 x̂2

|A24| =
1√
m4

= 1√
3

mi: number of measurement nodes

connected to variable node i

St−1
1 = σ2

w1
+

(

σ
2(t−1)
1

m1
+

σ
2(t−1)
2

m2
+

σ
2(t−1)
3

m3
+

σ
2(t−1)
4

m4

)

St−1
2 = σ2

w2
+

(

σ
2(t−1)
3

m3
+

σ
2(t−1)
4

m4

)

St−1
3 = σ2

w3
+

(

σ
2(t−1)
4

m4
+

σ
2(t−1)
5

m5
+

σ
2(t−1)
6

m6

)

|A14| = |A24| = |A34| =
1√
m4

= 1√
3

1
ct−1
4

= 1
m4

(

1
St−1
1

+ 1
St−1
2

+ 1
St−1
3

)

ut−1
4 = ct−1

4

(

A14

St−1
1

zt−1
1 + A24

St−1
2

zt−1
2 + A34

St−1
3

zt−1
3

)

+ x̂t−1
4

x̂t
4 = F4

(

ut−1
4 , ct−1

4

)

σ
2(t)
4 = ct−1

4 F ′
4

(

ut−1
4 , ct−1

4

)

zt2 = y2 − (A23x̂
t
3 +A24x̂

t
4) +

zt−1
2

St−1
2

(

σ
2(t)
3

m3
+

σ
2(t)
4

m4

)

A14 A23

A24

9



... Z-BAMP for Measurement Matrices with Zero-Elements: Denoisers

BAMP algorithm contains scalar operators:

Fi (ui; ci) = EXi
{Xi|Ui = ui} (13)

F
′
i (ui; ci) =

d

dui

Fi (ui; ci) , (14)

Variance of the estimation error under zero-mean Gaussian noise of effective variance ci:

σ
2
i = EXi

{

(Xi − Fi (ui; ci))
2|Ui = ui

}

= ci F
′
i (ui; ci) .

Operators Fi() and F ′
i() computed using posterior pdf

pXi|Ui
(xi|ui; ci) =

pUi|Xi
(ui|xi; ci) pXi

(xi)

pUi
(ui; ci)

i = 1, 2, ..., n (15)

where

pUi|Xi
(ui|xi; ci) =

1√
2πci

exp

(

− 1

2ci
(xi − ui)

2

)

(16)

effective variance ci of Gaussian distribution computed during BAMP iterations in (9)

pXi
(xi) is the pdf of the signal prior (independent components)
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... Z-BAMP for Measurement Matrices with Zero-Elements: Denoiser for BG-Source

Estimator functions for a Bernoulli-Gaussian (sparse Gaussian) signal prior

pXi
(xi) = γiδ(xi) + (1 − γi)N (xi; µXi

, σ
2
Xi
) (17)

γi: probability of a zero-component; σ2
Xi
: variance of non-zero Gaussian signal part

Mean of signal: µXi
= 0 (used for Z-BAMP-initialization in (5))

Variance of the signal Xi: σ
2(0)
i = (1 − γi)σ

2
Xi

(used for Z-BAMP-initialization in (6))

N (xi;µXi
, σ2

Xi
): value a Gaussian pdf takes when evaluated at xi

Estimator function (denoiser):

Fi(ui; ci) = ui M(ui, γi, ci, αi) , (18)

Variance of the estimation error:

σ
2
i = ci M(ui, γi, ci, αi) + Q(ui, γi, ci, αi) F

2
i (ui; ci) (19)

M(ui, γi, ci, αi) =
αi

αi + 1

1

1 + Q(ui, γi, ci, αi)
(20)

Q(ui, γi, ci, αi) =
γi

1 − γi

√
αi + 1 e

− u2i
2ci

αi
αi+1 where αi = σ

2
Xi
/ci (21)
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Substitute Decoupled Measurement Model

Remark: Gaussian pdf (16) for the “effective” noise applies for i = 1, 2, ..., n but we have only

m < n measurements

equivalent decoupled measurement model in n dimensions

ui = xi + w̃i with i = 1, 2, ..., n and w̃i ∼ N (0, ci) , (22)

instead of the coupled model in m < n dimensions given by y = Ax + w.

F () in BAMP is a scalar(!) denoiser to reduce the effect of the Gaussian noise w̃j

proven in Bayati & Montanari (2011), Donoho et al. (2011) and Eldar & Kutyniok (2012,

Chapter 9), Montanari (2011) to apply asymptotically for large dimension n

independence of the n coordinates and the validity of the Gaussian model for w̃j in (22) is

achieved by the Onsager-term in (12) (see Montanari (2011)).
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Measurement Matrices

Random Gaussian or Rademacher (±1) matrices known to work well for compressed sensing

(fulfill RIP with high probability)

More systematic designs such as randomly sampled DFT matrices also work well

Problem: for large signal vector dimension n, complexity of matrix-vector multiplications in BAMP

as well as storage requirements impractical

even worse for other commonly used recovery schemes (OMP or convex optimization)

Solution proposed here: super-sparse measurement matrices lifted from a protograph

design principle borrowed from LDPC convolutional channel codes (e.g. Mitchell et al. (2008))
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Lifted Measurement Matrices

A

B

B

B

A

A

A

B

A

B

A

B

a

a

a

b

b

b

c

c

c

c

c

b

b

b

c

a

a

a

lifted graph by

y1

y2

y3

y4

y5

y1

y2

y3

y4

y5

y6y6

x2

x3

x4

x5

x6

x7

x8

x9

x1

x2

x3

x4

x5

x6

x7

x8

x9

x1

L = 3 copies of

M1 = 2, N1 = 3

protograph

protograph edge permutations

measurement matrix

graph of m× n

m = 6
n = 9 start from a Rademacher protograph: random

matrix of dimensions M1×N1, with ±1 elements

define lifting factor L: number of copies of the

protograph

Generate large m × n measurement matrix with

m = L · M1 and n = L · N1 by random

permutations of edges of the same types across

the copies of the protograph

Normalize to unit column norm.

Note: A2
qi = 1/mi for q ∈ Mi assumed in the

Z-BAMP derivation is exact with mi = M1 for

all i, due to design by lifting
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... Lifted Measurement Matrices: Design Examples

L=10 Copies, 4 x 10 Protograph
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... Lifted Measurement Matrices: Storage

Full matrix:

m · n memory locations: B · m · n bits, with B = 32 bits for Gaussian (floating point) and

B = 1 bit for Rademacher matrices

Lifted matrix: lifting factor L, prototype M1 × N1 matrix ⇒ L · N1 · M1 non-zero elements

Location of each non-zero element each by log2(m · n) bits plus one bit to indicate the sign:

total memory L · M1 · N1 · log2(2 · m · n) = 1
L · m · n · log2(2 · m · n) bits

saving-factor due to lifting:

s =
B · m · n

1
L · m · n · log2(2 · m · n) =

L · B
log2(m · n) + 1

=
L · B

log2(L
2 · N1 · M1) + 1

=
L · B

2 log2(L) + 1 + log2(N1 · M1)
≈ L · B

2 log2(L)
≈ L

40
· B (large L)

Numerical examples for compression rate of m/n = M1/N1 = 0.4:

L = 100,M1 = 12, N1 = 30 → s ≈ 140 for B = 32 and s ≈ 4.4 for B = 1

L = 1000,M1 = 12, N1 = 30 → s ≈ 1080 for B = 32 and s ≈ 34 for B = 1

L = 106,M1 = 20, N1 = 50 → s ≈ 630000 for B = 32 and s ≈ 20000 for B = 1

Memory saving grows linearly with lifting factor L
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... Lifted Measurement Matrices: Complexity

Full matrix (Gaussian or Rademacher):

Within conventional BAMP, per iteration two matrix-vector multiplications, each of complexity-

order O(m · n) (simpler to implement for ±1 matrix elements)

Lifted matrices:

Same matrix-vector multiplications involve m times |Nq| = N1 terms in (12) and n times

|Mi| = M1 terms in (10).

Complexity order O(m ·N1) = O(L ·M1 ·N1) and O(n ·M1) = O(L ·N1 ·M1), so that

is twice O(L · N1 · M1) = O( 1
L · m · n)

Complexity saving in the order of the lifting factor L
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Specialization of Z-BAMP for Application with Lifted Matrices

Sets Nq of signal components connected to measurements q: |Nq|=N1 for all q=1, ...,m

Sets Mi of measurements connected to signal components i: |Mi|=M1 for all i = 1, ..., n

Assume measurement noise variance σ2
w to be the same at all measurement nodes. Then

S
t−1
q = σ

2
w +

1

M1

∑

i∈Nq

σ
2(t−1)
i ≈ σ

2
w +

1

m

n∑

i=1

σ
2(t−1)
i = S

t−1
for all q (23)

with the approximation for the sum:

1

M1

∑

i∈Nq

σ
2(t−1)
i ≈ 1

M1

N1

n

n∑

i=1

σ
2(t−1)
i =

N1

M1 · L · N1

n∑

i=1

σ
2(t−1)
i =

1

m

n∑

i=1

σ
2(t−1)
i (24)

Simplification of effective noise variance:

1

ct−1
i

=
1

M1

∑

q∈Mi

1

St−1
q

=
1

M1

1

St−1

∑

q∈Mi

1 =
1

St−1
⇒ c

t−1
i = c

t−1
= σ

2
w +

1

m

n∑

i=1

σ
2(t−1)
i

Used in Z-BAMP in (10), (12)

obtain conventional BAMP scheme, applied “as is” for lifted matrices
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... Specialization of Z-BAMP for Application with Lifted Matrices

Conventional BAMP-Recovery / key equations in scalar notation:

For iterations t = 1, 2, ...:

Compute the (one) effective noise variance c and the substitute measurements ui for variable nodes

c
t−1

= σ
2
w +

1

m

n∑

i=1

σ
2(t−1)
i (25)

u
t−1
i =

∑

q∈Mi

Aqi z
t−1
q + x̂

t−1
i for i = 1, 2, ..., n (26)

Compute i = 1, 2, ..., n the signal-component estimates and the error variances

x̂
t
i = Fi

(
u
t−1
i , c

t−1
i

)
σ

2(t)
i = c

t−1
i F

′
i

(
u
t−1
i , c

t−1
i

)
(27)

Compute for zq for the measurement nodes q = 1, ...,m

z
t
q = yq −

∑

i∈Nq

Aqi x̂
t
i + z

t−1
q

1

m

n∑

i=1

σ
2(t)
i (28)

Stop, if
∑n

i=1

(
x̂t
i − x̂t−1

i

)2
< ε2

∑n
i=1

(
x̂t
i

)2
; otherwise, continue with (25) for t := t + 1.
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Simulation Results

I.i.d. Bernoulli-Gaussian source, γi =0.8 (zero-probability) and σ2
Xi

=1 for all i=1, 2, .., n.

Sampling rates around m
n = 0.4 required for successful recovery

Protograph with M1 = 10; pick N1 ∈ {24, ..., 28, 29}: leads to sampling rates in the range

0.34...0.42

pick lifting factors L ∈ {48, 192, 480}
Measurement matrices with m = L · M1 ∈ {480, 1920, 4800} rows and

n ∈ {1152...1392, 4608...5568, 11520...13920} columns (signal components)

M1 = 12 with N1 ∈ {29, 30, ...35} for lifting factor L = 1008

Measurement matrix with m = 12096 rows and n ∈ {29232...35280} columns

Compare recovery SNR = 20 log10‖x‖2/‖x̂ − x‖2 obtained with full Gaussian random matrices

with lifted matrices of the same sizes.

Compare noiseless measurements and noisy ones with average measurement SNR of 50dB

BAMP stopping criterion: ε=10−5 remaining error converts to SNR/dB = 20 log10(10
5) =

100 dB (saturation of simulations in the noiseless case)
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... Simulation Results
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Lifting

measurement

SNR = 50dB

noiseless
measurements

m = 1920,M1 = 10, L = 192

m = 12096,M1 = 12, L = 1008

m = 480,M1 = 10, L = 48

m = 4800,M1 = 10, L = 480

almost no performance difference

between lifted and Gaussian

matrices of same sizes

larger lifting factor L: better

recovery performance, as block

size grows (steeper transition)

Gaussian and lifted matrices:

≈ 100 BAMP iterations to

converge in the transition region;

decrease to fewer than 60

iterations for rates above 0.4

Lifted matrices allow for much larger signal dimension n

in Matlab, full Gaussian matrices require 3 GB storage for m = 12096 at sampling rate of 0.4
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... Simulation Results

I.i.d. Bernoulli-Gaussian source, γi =0.8 (zero-probability) and σ2
Xi

=1 for all i=1, 2, .., n.

Sampling rates around m
n = 0.4 required for successful recovery

Protograph with M1=12; lifting factor L = 100

Noise no longer the same for all measurements: assumption that randomly chosen 50% of the

measurements have noise standard deviation 10 times larger than the other 50%

Average measurement SNR set to 40dB; BAMP uses this average knowledge

Stopping criterion: ε = 10−3 adapted to the average measurement noise variance that

corresponds to 40dB – stopping threshold set to 10 log10

(
(103)2) = 60dB

Z-BAMP scheme uses knowledge about quality of each of the measurements

SZ-BAMP: modified Z-BAMP scheme that uses the same sum-approximation as above to get more

stable computation of the sum-terms while still exploiting different noise variances

Compare recovery SNR = 20 log10‖x‖2/‖x̂ − x‖2 obtained with full Gaussian random matrices

and with lifted matrices of the same sizes.
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... Simulation Results

0.32 0.34 0.36 0.38 0.4 0.42

sampling rate R=m/n

0

10

20

30

40

50

re
c
o
v
e
ry

 S
N

R
 i
n
 d

B

Full Gaussian Measurement Matrix / m=1200 

BAMP

Z-BAMP

SZ-BAMP

0.32 0.34 0.36 0.38 0.4 0.42

sampling rate R=m/n

50

100

150

200

n
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s BAMP

Z-BAMP

SZ-BAMP

0.32 0.34 0.36 0.38 0.4 0.42

sampling rate R=m/n

0

10

20

30

40

50

re
c
o
v
e
ry

 S
N

R
 i
n
 d

B

Lifted Measurement Matrix / L=100, M1=12

BAMP

Z-BAMP

SZ-BAMP

0.32 0.34 0.36 0.38 0.4 0.42

sampling rate R=m/n

50

100

150

200

n
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s BAMP

Z-BAMP

SZ-BAMP

Z-BAMP and SZ-BAMP: performance gain vs BAMP at larger rates

Z-BAMP: oscillations around an accurate recovery result when lifted matrices are used: too few

terms in the sums over the estimation error variances; stopping criterion doesn’t detect convergence

Modification by SZ-BAMP leads to slightly better performance and fewer iterations; still some more

iterations than with normal BAMP – but also better performance

No performance difference between full Gaussian and lifted matrices
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Conclusions

Sparse Lifted Measurement Matrices can replace full Gaussian or Rademacher Matrices with large

savings in complexity and storage and without any performance loss

If the measurement noise variances are different, Z-BAMP and SZ-BAMP schemes can beneficially

exploit this for any type of measurement matrix

Number of required iterations can be kept under control by modifications in the computation of

sums over estimation error variances: no performance loss
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