

Quaternion-Valued MIMO Transmission

Sebastian Stern Robert F.H. Fischer

Supported by Deutsche Forschungsgemeinschaft (DFG) under grant Fl 982/13-1

- 1 Quaternions and Quaternion-Valued Lattices
- 2 Quaternion-Valued SISO/MIMO Transmission
- 3 Quaternion-Valued MIMO Equalization Schemes
- 4 Numerical Results
- 5 References

Complex numbers C:

$$c = \underbrace{\operatorname{Re}\{c\}}_{\in \mathbb{R}} + \underbrace{\operatorname{Im}\{c\}}_{\in \mathbb{R}} \operatorname{i}$$

- \blacksquare field extension of $\mathbb R$
- imaginary unit $i = \sqrt{-1}$

Quaternions \mathbb{H} :

$$\begin{split} q &= \underbrace{(\operatorname{Re}\{q^{\{1\}}\} + \operatorname{Im}\{q^{\{1\}}\} i)}_{q^{\{1\}} \in \mathbb{C}} + \underbrace{(\operatorname{Re}\{q^{\{2\}}\} + \operatorname{Im}\{q^{\{2\}}\} i)}_{q^{\{2\}} \in \mathbb{C}} j \\ &= \underbrace{q^{(1)}}_{\in \mathbb{R}} + \underbrace{q^{(2)}}_{\in \mathbb{R}} i + \underbrace{q^{(3)}}_{\in \mathbb{R}} j + \underbrace{q^{(4)}}_{\in \mathbb{R}} k \end{split}$$

- extension of C
- \blacksquare imaginary units $i,\,j,$ and $k=i\cdot j$
- multiplication is non-commutative (skew field)

Lattices

Definition of a lattice $\Lambda=\{\lambda\}$

- infinite set of points (vectors) over N-dimensional Euclidean space
- Abelian group with respect to addition:
 - closure:

$$\boldsymbol{\lambda}_1 + \boldsymbol{\lambda}_2 \in \boldsymbol{\Lambda}$$

associativity:

$$\boldsymbol{\lambda}_1 + (\boldsymbol{\lambda}_2 + \boldsymbol{\lambda}_3) = (\boldsymbol{\lambda}_1 + \boldsymbol{\lambda}_2) + \boldsymbol{\lambda}_3$$

commutativity:

$$\lambda_1 + \lambda_2 = \lambda_2 + \lambda_1$$

identity element:

$$\mathbf{0} \in \mathbf{\Lambda}$$
, where $\mathbf{\lambda}_1 + \mathbf{0} = \mathbf{\lambda}_1$

inverse element:

$$-oldsymbol{\lambda}_1\inoldsymbol{\Lambda}$$
, where $-oldsymbol{\lambda}_1+oldsymbol{\lambda}_1=oldsymbol{0}$

- created by a generator matrix $m{G} = [m{g}_1, \dots, m{g}_M]$, $m{\Lambda} = m{G}\mathbb{Z}^M$
 - N-dimensional basis vectors $\boldsymbol{g}_1, \ldots, \boldsymbol{g}_M$ span lattice of rank M
 - generator matrix of particular lattice is not unique
 - \rightarrow lattice basis reduction via unimodular integer transformation matrix

Real-valued (1D) integer lattice \mathbb{Z} :

- Euclidean ring
 - division with small remainder possible
 - Euclidean algorithm well-defined
- two nearest neighbors

• squared minimum distance $d_{\min}^2 = 1$

Complex-Valued (2D) lattices:

- Gaussian integers $\mathbb{G}=\mathbb{Z}+\mathbb{Z}\,\mathrm{i}$
 - Euclidean ring
 - four nearest neighbors
 - squared minimum distance $d_{\min}^2 = 1$
 - isomorphic to 2D real-valued integer lattice \mathbb{Z}^2
- Eisenstein integers $\mathbb{E} = \mathbb{Z} + \mathbb{Z} \, \omega$
 - $\omega = e^{i\frac{2\pi}{3}}$ *Eisenstein unit* (sixth root of unity)
 - Euclidean ring
 - six nearest neighbors
 - squared minimum distance $d_{\min}^2 = 1$
 - isomorphic to 2D hexagonal lattice A₂

4D Lattices: Lipschitz Integers

Lipschitz integers \mathcal{L} :

 $l = \underbrace{l^{(1)}}_{C_{\pi}} + \underbrace{l^{(2)}}_{C_{\pi}} \mathbf{i} + \underbrace{l^{(3)}}_{C_{\pi}} \mathbf{j} + \underbrace{l^{(4)}}_{C_{\pi}} \mathbf{k}$

Important properties: [CS99, CS03]

- eight nearest neighbors
- squared minimum distance

 $d_{\min}^2 = 1^2 + 0^2 + 0^2 + 0^2 = 1$

- *L* forms a *non-Euclidean* ring
 - no division with small remainder
 - Euclidean algorithm not defined

Hurwitz integers \mathcal{H} :

quaternions with components

$$\begin{split} h &= h^{(1)} + h^{(2)} \,\mathbf{i} + h^{(3)} \,\mathbf{j} + h^{(4)} \,\mathbf{k} \,, \\ &\qquad (h^{(1)}, h^{(2)}, h^{(3)}, h^{(4)}) \in \mathbb{Z}^4 \cup (\mathbb{Z} + 1/2)^4 \end{split}$$

- two subsets $\mathcal{H}_1 = \mathcal{L}$ and $\mathcal{H}_2 = \mathcal{L} + (1 + i + j + k)/2$
- isomorphic to 4D checkerboard lattice D₄

Important properties: [CS99, CS03]

- 24 nearest neighbors
- squared minimum distance

$$d_{\min}^2 = (\frac{1}{2})^2 + (\frac{1}{2})^2 + (\frac{1}{2})^2 + (\frac{1}{2})^2 = 1$$

- *H* forms a *Euclidean* ring
 - division with small remainder
 - Euclidean algorithm well-defined

2D projection

SISO fading (ECB domain; two orthogonal components)

equivalently described by real-valued matrix equation

 $\begin{bmatrix} \operatorname{Re}\{y\}\\\operatorname{Im}\{y\} \end{bmatrix} = \begin{bmatrix} \operatorname{Re}\{h\} & -\operatorname{Im}\{h\}\\\operatorname{Im}\{h\} & \operatorname{Re}\{h\} \end{bmatrix} \begin{bmatrix} \operatorname{Re}\{x\}\\\operatorname{Im}\{x\} \end{bmatrix} = \begin{bmatrix} h^{(\mathrm{d})} & -h^{(\mathrm{c})}\\h^{(\mathrm{c})} & h^{(\mathrm{d})} \end{bmatrix} \begin{bmatrix} \operatorname{Re}\{x\}\\\operatorname{Im}\{x\} \end{bmatrix}$

realized via quadrature up/down-mixing

Quaternion-valued SISO fading (four orthogonal components)

$$\underbrace{y}_{y^{\{1\}}+y^{\{2\}}j} = \underbrace{h}_{h^{\{1\}}+h^{\{2\}}j} \cdot \underbrace{x}_{x^{\{1\}}+x^{\{2\}}j}$$

equivalently described by complex-valued matrix equation

$$\begin{bmatrix} y^{\{1\}} \\ (y^{\{2\}})^* \end{bmatrix} = \begin{bmatrix} h^{\{1\}} & -h^{\{2\}} \\ (h^{\{2\}})^* & (h^{\{1\}})^* \end{bmatrix} \begin{bmatrix} x^{\{1\}} \\ (x^{\{2\}})^* \end{bmatrix} = \begin{bmatrix} h^{(d)} & -h^{(c)} \\ (h^{(c)})^* & (h^{(d)})^* \end{bmatrix} \begin{bmatrix} x^{\{1\}} \\ (x^{\{2\}})^* \end{bmatrix}$$

realized via RF mixing and dual-polarized antennas [CLF14, LBX16]

Quaternion-valued system equation [IS95, WWS06]

y = hx + n

Transmit symbol
$$x = (\underbrace{x^{(1)} + x^{(2)} i}_{\text{vertical}}) + (\underbrace{x^{(3)} - x^{(4)} i}_{\text{horizontal}})^* j$$
 \rightarrow drawn from 4D signal constellation
a fading factor $h = (\underbrace{h^{(1)} + h^{(2)} i}_{\text{direct gain}}) + (\underbrace{h^{(3)} - h^{(4)} i}_{\text{cross-polar gain}})^* j$
 \rightarrow four i.i.d. real-valued Gaussian coefficients
additive noise $n = (\underbrace{n^{(1)} + n^{(2)} i}_{\text{vertical noise}}) + (\underbrace{n^{(3)} - n^{(4)} i}_{\text{horizontal noise}})^* j$
 \rightarrow four i.i.d. real-valued Gaussian coefficients
receive symbol $y = (\underbrace{y^{(1)} + y^{(2)} i}_{\text{vertical}}) + (\underbrace{y^{(3)} - y^{(4)} i}_{\text{horizontal}})^* j$

Quaternion-valued vector/matrix system equation

$$oldsymbol{y} = oldsymbol{H} oldsymbol{x} + oldsymbol{n}$$
, with $oldsymbol{H} = ig[h_{l,k}ig]_{\substack{l=1,...,L \ k=1,...,K}} \in \mathbb{H}^{L imes K}$

K-user MIMO multiple-access channel with L pairs of antennas: [SF18]

Quaternion-Valued Signal Constellations

Constellations based on Lipschitz integers $\boldsymbol{\mathcal{L}}$

- QAM in each polarization
- aka polarization-multiplexed QAM
- cardinalities $M = 4^2 = 16, 16^2 = 256, \dots$
- 4D Gray labeling possible
- separable into ASK per component

Constellations based on Hurwitz integers H [SF18]

- subsets \mathcal{L}_1 and \mathcal{L}_2 with offset $\pm \frac{1}{4}(1+i+j+k)$
- enable one additional bit
 - $\rightarrow M = 2 \cdot 16 = 32, 2 \cdot 256 = 512, \dots$
- same boundaries and minimum distance
- 4D Gray labeling not possible
- \rightarrow coded modulation via two-stage approach [SFF19] $\frac{\widehat{\mathfrak{S}}}{\mathfrak{B}}$
 - 1. offset stage (one bit selects offset/subset)
 - 2. subset stage (conventional schemes, e.g., BICM)

MIMO Equalization: Linear

$L \times K$ MIMO multiple-access channel

- quaternion-valued linear equalization
- MMSE criterion via

$$\boldsymbol{H}^{+} = (\boldsymbol{H}^{\mathsf{H}}\boldsymbol{H} + \zeta \boldsymbol{I})^{-1}\boldsymbol{H}^{\mathsf{H}} \in \mathbb{H}^{K \times L}$$

regularized pseudoinverse
 ζ inverse SNR

Diversity order (i.i.d. Gaussian channel)

- slope of (uncoded) error curve $ightarrow \Delta$ decades per $10~{
 m dB}~{
 m SNR}$
- $h_{l,k} = \operatorname{Re}\{h_{l,k}\} + \operatorname{Im}\{h_{l,k}\} i \in \mathbb{C}$ \rightarrow two independent gains; i.e., diversity

$$\Delta_{\rm c,LIN} = L - K + 1 \qquad (i.e., \Delta_{\rm c,LIN} = 1 \text{ for } L = K)$$

■
$$h_{l,k} = h_{l,k}^{(1)} + h_{l,k}^{(2)} \mathbf{i} + h_{l,k}^{(3)} \mathbf{j} + h_{l,k}^{(4)} \mathbf{k} \in \mathbb{H}$$

 \rightarrow four independent gains; i.e., diversity

 $\Delta_{\mathrm{q,LIN}} = 2\left(L - K + 1\right) \qquad (\text{i.e., } \Delta_{\mathrm{q,LIN}} = 2 \text{ for } L = K)$

Lattice-reduction-aided (LRA) linear equalization [YW02, WF03]:

- factorization $H = H_{\rm red} Z$
- **a** $\boldsymbol{Z} \in \boldsymbol{\Lambda}^{K imes K}$ integer matrix \rightarrow integer lattice Λ
- non-integer equalization via H⁺_{red}
- integer equalization via Z^{-1}

Choice of integer matrix/lattice

H $\in \mathbb{R}^{L \times K}$: $\Lambda = \mathbb{Z}$

•
$$\boldsymbol{H} \in \mathbb{C}^{L \times K}$$
: $\boldsymbol{\Lambda} = \mathbb{G} = \mathbb{Z} + \mathbb{Z}$ i

- **H** $\in \mathbb{H}^{L \times K}$:
 - Lipschitz-integer lattice *L*?
 Hurwitz-integer lattice *H*?

Lenstra-Lenstra-Lovász (LLL) reduction

- reduction criterion/algorithm with polynomial complexity
- generalization of Euclidean algorithm w.r.t. matrices [N96] → division with small remainder required
- available variants:
 - (R)LLL for $\Lambda = \mathbb{Z}$
 - CLLL for $\Lambda = \mathbb{G}$ [GLM09]
 - QLLL for A
 - QLLL for $\Lambda = \mathcal{H}$ [SF18]

 \rightarrow not a Euclidean ring! \rightarrow inherently contains $\mathcal{L} \subset \mathcal{H}$

Diversity order (i.i.d. Gaussian channel)

- LRA linear equalization achieves full receive diversity [TMK07]
- complex-valued transmission: $\Delta_{c,LRA} = L$
- quaternion-valued transmission: $\Delta_{q,LBA} = 2L$

MIMO multiple-access channel scenario

MIMO multiple-access channel scenario

Quaternions

- algebraic structure with four orthogonal components
- multiplication non-commutative
- related rings Lipschitz and Hurwitz integers

Quaternion-valued transmission

- realized via dual-polarized antennas
- doubled bandwidth efficiency
- same power efficiency

} w.r.t. complex-valued case

Quaternion-valued MIMO transmission

- diversity orders doubled w.r.t. complex-valued case
- LRA equalization via QLLL (based on Hurwitz integers)

References

[CS99]	J. Conway, N.J.A. Sloane: Sphere Packings, Lattices and Groups. Third Edition, Springer, 1999.
[CS03]	J.H. Conway, D.A. Smith. On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. Taylor & Francis, 2003.
[CLF14]	Y.H. Cui, R.L. Li, H.Z. Fu. A Broadband Dual-Polarized Planar Antenna for 2G/3G/LTE Base Stations. <i>IEEE Trans. Antennas Propag.</i> , pp. 4836–4840, Sep. 2014.
[GLM09]	Y.H. Gan, C. Ling, W.H. Mow: Complex Lattice Reduction Algorithm for Low-Complexity Full-Diversity MIMO Detection. <i>IEEE Trans. Signal Processing</i> , pp. 2701–2710, July 2009.
[IS95]	O.M. Isaeva, V.A. Sarytchev. Quaternion Presentations Polarization State. 2nd Topical Symp. on Combined Optical-Microwave Earth and Atmosphere Sensing, pp. 195–196, Apr. 1995.
[LBX16]	M.Y. Li, Y.L. Ban, Z.Q. Xu, <i>et al</i> . Eight-Port Orthogonally Dual-Polarized Antenna Array for 5G Smartphone Applications. <i>IEEE Trans. Antennas Propag.</i> , pp. 3820–3830, June 2016.
[N96]	H. Napias. A Generalization of the LLL-Algorithm over Euclidean Rings or Orders. J. de Théorie des Nombres de Bordeaux, pp. 387–396, 1996.
[SF18]	S. Stern, R.F.H. Fischer. Quaternion-Valued Multi-User MIMO Transmission via Dual-Polarized Antennas and QLLL Reduction. 25th International Conference on Telecommunications (ICT), pp. 63–69, June 2018.
[SFFF19]	S. Stern, F. Frey, J.K. Fischer, R.F.H. Fischer. Two-Stage Dimension-Wise Coded Modulation for Four-Dimensional Hurwitz-Integer Constellations. 12th International ITG Conference on Systems, Communications and Coding (SCC), pp. 197–202, Feb. 2019.
[TMK07]	M. Taherzadeh, A. Mobasher, A.K. Khandani: LLL Reduction Achieves the Receive Diversity in MIMO Decoding. <i>IEEE Trans. Information Theory</i> , pp. 4801–4805, Dec. 2007.
[WF03]	C. Windpassinger, R.F.H. Fischer. Low-Complexity Near-Maximum-Likelihood Detection and Precoding for MIMO Systems using Lattice Reduction. <i>IEEE Information Theory Workshop</i> , pp. 345–348, Mar. 2003.
[WWS06]	B.J. Wysocki, T.A. Wysocki, J. Seberry. Modeling Dual Polarization Wireless Fading Channels using Quaternions. <i>IST Workshop on Sensor Networks and Symposium on Trends in Communications</i> , pp. 68–71, June 2006.
[YW02]	H. Yao, G.W. Wornell: Lattice-Reduction-Aided Detectors for MIMO Communication Systems. <i>IEEE Global Telecommunications Conference</i> , Nov. 2002.