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Transmission vs Identification
Transmission (Shannon coding) over Vn:

Alice: m Enc
x
Vn Dec m′ ≈ε m :Bob

(n,M, ε) code {xm, Dm}m∈[M ]:

1

M

∑
Vn(Dm|xm) ≥ 1− ε

The decoding sets are disjoint:
D...

D1

D2 Dm

The transmission capacity is the optimal C = limε→0 limn→∞ logM/n.
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Transmission vs Identification
Identification (Ahlswede-Dueck coding?) over Vn:

Alice: i Enc
x
Vn i ≈ε,δ i′? accept

reject

i′

:Bob

(n, I, ε) code {Xi, Di}i∈[I]:

minVn(Di|Xi) ≥ 1− ε maxVn(Di|Xj) ≤ ε

The "decoding"/testing sets can overlap:

D...D1

D...

D2 Di

D... D...

The identification capacity is the optimal CID = limε→0 limn→∞ log log I/n. CID = C!.
Asymptotically small pairwise overlap, but exponentially many overlaps.
Pairwise overlap is more stringent than pairwise distinguishability.
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Transmission AND Identification
Transmission-Identification (Han-Verdù coding?) over Vn:

Alice: m, i Enc
x
Vn Dec

m′, i′
i ≈ε,δ i′? accept

reject m
′

i′

:Bob

(n,M, I, ε) code {xm,i, Dm,i}i∈[I]: Dm,i ⊥ Dm′,i and

min
i

1

M

∑
m

Vn(Dm,i|xm,i) ≥ 1− ε maxVn(Di|Xj) ≤ ε(
⇒ min

i
Vn(Di|Xi) ≥ 1− ε

)
The transmission-identification capacity is the optimal

lim
ε→0

lim
n→∞

1

n
(logM, log log I).

(C,C) is achievable!.
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Tag codes
Separation coding: converting a good transmission code into a good identification
code is enough.
Given a capacity achieving transmission code, an transmission-identification capacity
is achieved choosing tag (labelling) functions ti : [M ]→ [q]:

m, i m, ti(m) Enc Vn Dec
m′,t′

t′ = ti′(m
′)? accept

reject m
′

i′

A [I,M, q,Ω/M ] tag code is a collection of I functions from [M ] to [q] with pairwise
overlap at most Ω.

Need tag codes [I,M, q, ε] with:

1. size I exponential in M
2. bits of output log q sublinear in bits of input logM

3. asymptotically zero ε
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Tag codes = Error-correction codes
(M = blocklength, I = size, d)q error-correction codes (without decoding) are tag
codes

I codewords


M symbols of size s︷ ︸︸ ︷
~c1 = c11 . . . c1M

~c... = . . .

~cI = cI1 . . . cIM

d = M − Ω

For identification we need
log log I

logM
→ 1

log q

logM
→ 0

d

M
→ 1.

From the Gilbert-Varshamov bound

I >
qM∑d−1

k=0

(
M
k

)
(q − 1)k

>
qM

2Mqd
=
qΩ

2M

Choosing Ω = M − d = b 2
log qMc then

I > 2M ε ≤ 2/ log q
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Tag codes = Error-correction codes
(M = blocklength, I = size, d)q error-correction codes (without decoding) are tag
codes

I codewords


M symbols of size s︷ ︸︸ ︷
~c1 = c11 . . . c1M

~c... = . . .

~cI = cI1 . . . cIM

d = M − Ω

For identification we need
log log I

logM
→ 1

log q

logM
→ 0

d

M
→ 1.

There always exist

• (M, 2M ,M(1− 2/ log q))q error-correction codes, or equivalently
• [2M ,M, q, 2/ log q] tag codes.
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Achievability: proof sketch (for identification)

U Enc
Xn
U

Vn
Y n
U

Dec Dn(Y n
U )

ti(U) Enc
Xδn
ti(U)

Vδn
Y δn
ti(U)

Dec Dδn(Y δn
ti(U)) δn ∈ o(n)

Vn+δn(Dn+δn
j |Xn+δn

i ) = Pr
[
tj ◦Dn(Y n

U ) 6= Dδn
(
Y δn
ti(U)

)]
≤ Pr[Dn(Y n

U ) 6= U ] + Pr
[
tj ◦Dn(Y n

U ) 6= D
(
Y δn
ti(U)

)
|Dn(Y n

U ) = U
]

≤ Pr[Dn(Y n
U ) 6= U ] + Pr

[
tj(U) 6= Dδn

(
Y δn
ti(U)

)]
≤ Pr[Dn(Y n

U ) 6= U ] + Pr
[
Dδn
(
Y δn
ti(U)

)
6= ti(U)

]
+ Pr[tj(U) 6= ti(U)]

≤ εn + εδn +
2

log qδn

≤ εn + εδn +
2

δn(C − εδn)

Vn+δn(Dn+δn
i |Xn+δn

i ) ≥ 1− εn − εδn
1

n + δn
log log I =

n

n + δn

1

n
logM ≥ n

n + δn
(R− εn)→ R
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Randomness and (Transmission-)Identification

U Enc
Xn
U

Vn
Y n
U

Dec Dn(Y n
U )

ti(U) Enc
Xδn
ti(U)

Vδn
Y δn
ti(U)

Dec Dδn(Y δn
ti(U))

• The achievable rate depends only on the size of the common randomness.
• If non-transmission sources of common randomness are present, the

identification rate increases (unlike for transmission)
• However, identification capacity is zero if transmission capacity is zero.

Existing conjecture: Identification and common-randomness capacities are always
equal when transmission capacity is non-zero.
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Secrecy of Identification

Wn

U Enc
Xn
U

Vn
Y n
U

Dec Dn(Y n
U )

Wδn

ti(U) Enc
Xδn
ti(U)

Vδn
Y δn
ti(U)

Dec Dδn(Y δn
ti(U))

• if secrecy of U is not needed (e.g., U is randomness, not a message) we can
ignore the wiretap channelWn.

• to ensure the secrecy of the identity only non-zero secret capacity is needed
againstWδn.

Secret identification capacity is still common-randomness capacity, even if secret
key/transmission capacity are significantly lower (but non-zero).
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Motivation
• (transmission-identification) Communication to a specific receiver among many

receivers listening to the same channel with feedback
• (transmission-identification) watermarking
• (identification) Potential for very low-latency were only few outcomes among

many are relevant (automotive, ...)

Could be easy to provide in already implemented codes...
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Closing remarks
Previous work:

• Analog results for compound and arbitrarily-varying channels, with and without
wiretap, PUFs, etc.

• Analog results for quantum outputs with no advantage from incompatible
“decodings”/tests.

• All proofs relied on a random tag code argument.
• Partial results for quantum channels (missing converses, )

Future Work:

• Exploit the connection to channel resolvability to prove that common-randomness
cost is an upper bound.

• Prove equivalence of distillable common-randomness and common-randomness
cost to prove the common-randomness=identification conjecture.
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