IDentification, Tag codes end Error-correction codes (or "A different way of using Error-correction codes")

Roberto Ferrara Technical University of Munich Department of Electrical and Computer Engineering Institute for Communications Engineering 13th March 2019

Tur Uhrenturm

Transmission vs Identification

Transmission (Shannon coding) over \mathcal{V}^n :

Alice: $m - \underline{\operatorname{Enc}}_{x} \mathcal{V}^{n} - \underline{\operatorname{Dec}}_{x} m' \approx_{\varepsilon} m$:Bob $(n, M, \varepsilon) \operatorname{code} \{x_{m}, D_{m}\}_{m \in [M]}$: $\frac{1}{M} \sum \mathcal{V}^{n}(D_{m}|x_{m}) \geq 1 - \varepsilon$ The decoding sets are disjoint: D_{1} $D_{...}$ D_{2} D_{m}

The transmission capacity is the optimal $C = \lim_{\epsilon \to 0} \lim_{n \to \infty} \log M/n$.

Transmission vs Identification

Transmission (Shannon coding) over \mathcal{V}^n :

Alice: $m - Enc - x - V^n - Dec - m' \approx_{\varepsilon} m$:Bob $(n, M, \varepsilon) \operatorname{code} \{X_m, D_m\}_{m \in [M]}$: $\frac{1}{M} \sum V^n (D_m | X_m) \ge 1 - \varepsilon$ The decoding sets are disjoint: $D_1 - D_m$

The transmission capacity is the optimal $C = \lim_{\epsilon \to 0} \lim_{n \to \infty} \log M/n$.

Transmission vs Identification

Transmission (Shannon coding) over \mathcal{V}^n :

 $\begin{array}{cccc} \text{Alice:} & m & \fbox{Enc} & \mathcal{V}^n \\ \hline & & & & \end{bmatrix} & \begin{array}{c} \text{Dec} & m' \approx_{\varepsilon} m \\ \end{array} \end{array} \end{array} \qquad : \text{Bob} \\ (n, M, \varepsilon) \text{ code } \{ \boldsymbol{X_m}, D_m \}_{m \in [M]} : \end{array}$

 $\min \mathcal{V}^n(D_m | \boldsymbol{X_m}) \ge 1 - \varepsilon$

The decoding sets are disjoint:

The transmission capacity is the optimal $C = \lim_{\epsilon \to 0} \lim_{n \to \infty} \log M/n$.

Transmission vs Identification

Identification (Ahlswede-Dueck coding?) over \mathcal{V}^n :

Alice: $i \underbrace{\text{Enc}}_{x} \underbrace{\mathcal{V}^{n}}_{i \approx \varepsilon, \delta} \underbrace{i'^{2}}_{reject} \xrightarrow{accept}_{reject}$:Bob $(n, I, \varepsilon) \text{ code } \{\mathbf{X}_{i}, D_{i}\}_{i \in [I]}$: $\min \mathcal{V}^{n}(D_{i} | \mathbf{X}_{i}) \geq 1 - \varepsilon \qquad \max \mathcal{V}^{n}(D_{i} | \mathbf{X}_{j}) \leq \varepsilon$

The "decoding"/testing sets can overlap:

The identification capacity is the optimal $C_{ID} = \lim_{\epsilon \to 0} \lim_{n \to \infty} \log \log I/n$. $C_{ID} = C!$. Asymptotically small pairwise overlap, but exponentially many overlaps. Pairwise overlap is more stringent than pairwise distinguishability.

Transmission AND Identification

Transmission-Identification (Han-Verdù coding?) over \mathcal{V}^n :

The transmission-identification capacity is the optimal

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} (\log M, \log \log I).$$

(C, C) is achievable!.

Tag codes

Separation coding: converting a good transmission code into a good identification code is enough.

Given a capacity achieving transmission code, an transmission-identification capacity is achieved choosing tag (labelling) functions $t_i : [M] \rightarrow [q]$:

$$m, i - m, t_i(m) - Enc - \mathcal{V}^n - Dec - t' = t_{i'}(m')? - accept reject m'$$

A $[I, M, q, \Omega/M]$ tag code is a collection of I functions from [M] to [q] with pairwise overlap at most Ω .

Need tag codes $[I, M, q, \varepsilon]$ with:

- **1**. size I exponential in M
- 2. bits of output $\log q$ sublinear in bits of input $\log M$
- 3. asymptotically zero ε

ПΠ

Tag codes = Error-correction codes

 $(M = blocklength, I = size, d)_q$ error-correction codes (without decoding) are tag codes

$$I \text{ codewords} \begin{cases} \vec{c_1} = c_{11} \dots c_{1M} \\ \vec{c_m} = \dots \\ \vec{c_I} = c_{I1} \dots c_{IM} \end{cases} \quad d = M - \Omega$$

For identification we need

$$\frac{\log \log I}{\log M} \to 1 \qquad \qquad \frac{\log q}{\log M} \to 0 \qquad \qquad \frac{d}{M} \to 1.$$

From the Gilbert-Varshamov bound

Tag codes = Error-correction codes

 $(M = \text{blocklength}, I = \text{size}, d)_q$ error-correction codes (without decoding) are tag codes

$$I \text{ codewords} \begin{cases} \overbrace{\vec{c}_1 = c_{11} \dots c_{1M}}^{M \text{ symbols of size } s} \\ \overbrace{\vec{c}_1 = c_{11} \dots c_{1M}}^{M \text{ symbols of size } s} \\ \overrightarrow{c}_{I} = c_{I1} \dots c_{IM} \end{cases} \quad d = M - \Omega$$

For identification we need

$$\frac{\log \log I}{\log M} \to 1 \qquad \qquad \frac{\log q}{\log M} \to 0 \qquad \qquad \frac{d}{M} \to 1.$$

There always exist

- $(M, 2^M, M(1 2/\log q))_q$ error-correction codes, or equivalently
- $[2^M, M, q, 2/\log q]$ tag codes.

Achievability: proof sketch (for identification)

$$\begin{split} U &= \underbrace{\operatorname{Enc}}_{X_{U}^{n}} \underbrace{V^{n}}_{Y_{U}^{n}} \underbrace{\operatorname{Dec}}_{D^{n}} D^{n}(Y_{U}^{n}) \\ t_{i}(U) &= \underbrace{\operatorname{Enc}}_{X_{t_{i}(U)}^{\delta_{n}}} \underbrace{V^{\delta_{n}}}_{Y_{t_{i}(U)}^{\delta_{n}}} \underbrace{\operatorname{Dec}}_{D^{\delta_{n}}} D^{\delta_{n}}(Y_{t_{i}(U)}^{\delta_{n}}) \\ \delta_{n} \in o(n) \\ V^{n+\delta_{n}}(D_{j}^{n+\delta_{n}}|X_{i}^{n+\delta_{n}}) &= Pr\left[t_{j} \circ D^{n}(Y_{U}^{n}) \neq D^{\delta_{n}}(Y_{t_{i}(U)}^{\delta_{n}})\right] \\ &\leq Pr[D^{n}(Y_{U}^{n}) \neq U] + Pr\left[t_{j} \circ D^{n}(Y_{U}^{n}) \neq D(Y_{t_{i}(U)}^{\delta_{n}})\right] \\ &\leq Pr[D^{n}(Y_{U}^{n}) \neq U] + Pr\left[t_{j}(U) \neq D^{\delta_{n}}(Y_{t_{i}(U)}^{\delta_{n}})\right] \\ &\leq Pr[D^{n}(Y_{U}^{n}) \neq U] + Pr\left[D^{\delta_{n}}(Y_{t_{i}(U)}^{\delta_{n}}) \neq t_{i}(U)\right] + Pr[t_{j}(U) \neq t_{i}(U)] \\ &\leq \varepsilon_{n} + \varepsilon_{\delta_{n}} + \frac{2}{\log q_{\delta_{n}}} \\ &\leq \varepsilon_{n} + \varepsilon_{\delta_{n}} + \frac{2}{\delta_{n}(C - \varepsilon_{\delta_{n}})} \end{split}$$

Achievability: proof sketch (for identification)

$$U = \underbrace{\operatorname{Enc}}_{X_U^n} \underbrace{\mathcal{V}^n}_{Y_U^n} \underbrace{\operatorname{Dec}}_{Dec} D^n(Y_U^n)$$

$$t_i(U) = \underbrace{\operatorname{Enc}}_{X_{t_i(U)}^{\delta_n}} \underbrace{\mathcal{V}^{\delta_n}}_{Y_{t_i(U)}^{\delta_n}} \underbrace{\operatorname{Dec}}_{Dec} D^{\delta_n}(Y_{t_i(U)}^{\delta_n}) \qquad \delta_n \in o(n)$$

 $\begin{aligned} \mathcal{V}^{n+\delta_n}(D_j^{n+\delta_n}|X_i^{n+\delta_n}) &= Pr\left[t_j \circ D^n(Y_U^n) \neq D^{\delta_n}(Y_{t_i(U)}^{\delta_n})\right] \\ &\leq Pr[D^n(Y_U^n) \neq U] + Pr\left[D^{\delta_n}(Y_{t_i(U)}^{\delta_n}) \neq t_i(U)\right] + Pr[t_j(U) \neq t_i(U)] \\ &\leq \varepsilon_n + \varepsilon_{\delta_n} + \frac{2}{\delta_n(C - \varepsilon_{\delta_n})} \\ \mathcal{V}^{n+\delta_n}(D_i^{n+\delta_n}|X_i^{n+\delta_n}) \geq 1 - \varepsilon_n - \varepsilon_{\delta_n} \\ &\frac{1}{n+\delta_n} \log \log I = \frac{n}{n+\delta_n} \frac{1}{n} \log M \geq \frac{n}{n+\delta_n}(R - \varepsilon_n) \to R \end{aligned}$

Randomness and (Transmission-)Identification

- The achievable rate depends only on the size of the common randomness.
- If non-transmission sources of common randomness are present, the identification rate increases (unlike for transmission)
- However, identification capacity is zero if transmission capacity is zero.

Existing conjecture: Identification and common-randomness capacities are always equal when transmission capacity is non-zero.

Secrecy of Identification

- if secrecy of U is not needed (e.g., U is randomness, not a message) we can ignore the wiretap channel \mathcal{W}^n .
- to ensure the secrecy of the identity only non-zero secret capacity is needed against \mathcal{W}^{δ_n} .

Secret identification capacity is still common-randomness capacity, even if secret key/transmission capacity are significantly lower (but non-zero).

Motivation

- (transmission-identification) Communication to a specific receiver among many receivers listening to the same channel with feedback
- (transmission-identification) watermarking
- (identification) Potential for very low-latency were only few outcomes among many are relevant (automotive, ...)

Could be easy to provide in already implemented codes...

Closing remarks

Previous work:

- Analog results for compound and arbitrarily-varying channels, with and without wiretap, PUFs, etc.
- Analog results for quantum outputs with no advantage from incompatible "decodings"/tests.
- All proofs relied on a random tag code argument.
- Partial results for quantum channels (missing converses,)

Future Work:

- Exploit the connection to channel resolvability to prove that common-randomness cost is an upper bound.
- Prove equivalence of distillable common-randomness and common-randomness cost to prove the common-randomness=identification conjecture.