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“The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected at
another point.” — Claude E. Shannon, 1948
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How it is done today?

one
point piloting channel

coding modulation upsampling pulse shaping

channel

filteringsynchronizationdemodulation
channel
decodingpilot detectionanother

point

m
et

ric
Transmitter (TX)

Receiver (RX)

Non-linearity?

Optics?

Molecular?

Block-based engineering design
• Independently optimized blocks for specific tasks
→ Optimality requires many (strong) assumptions!

Can we build a system that learns
to communicate?
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The End-to-End Learning Idea

one
point Transmitter Channel Receiver

another
point

s x y ŝ
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The End-to-End Learning Idea

one
point

Neural Network

Channel

Neural Network

another
point

s x y ŝ

Replace transmitter and receiver by deep neural networks
• No underlying block structure
• All signal processing needs to be learned
• End-to-end learning

Train to minimize most relevant end-to-end metric (e.g., error rate
or mutual information)
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Autoencoder Neural Network

v Encoder Penalty Decoder w

Autoencoder

h Ω(h)

source Neural
Network Channel Neural

Network sink
s x y ŝ

The autoencoder network as communication system
• Perfect fit: channel as penalty layer
• Transmitter is trained to find robust signal x
• Receiver must be able to decode signal y
• System can be trained end-to-end
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Autoencoder Layer Structure

s ŝ

E
m

be
dd

in
g

D
en

se
N

N

R
→

C

N
or

m
al

iz
at

io
n

Transmitter (TX)

Channel

C
→

R

D
en

se
N

N

Receiver (RX)


0.1

0.8

0.05

ar
g

m
axbx y

Transmitter Neural Network
• Input: message s ∈M= {1,2, . . . ,M}
• Output: normalized complex symbol sequence x

Receiver Neural Network
• Input: complex sample sequence y
• Output: message ŝ ∈M= {1,2, . . . ,M}
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Learning 8-PSK
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The Gap Between Theory and Practice

• For any real system, the channel is a black box
• Unknown transfer function→ Gradient backpropagation

impossible

→ How can we apply the concept to a real system?
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Solution 1: Two-phase Training Strategy

Transmitter
Stochastic
Channel
Model

Receiver

Phase I: End-to-end training on stochastic channel model

Training

Using a stochastic channel model
• Described by computable analytic functions
• Must be close to physical channel
• Simple LOS model: phase offset, CFO, SFO and AWGN
• Can be extended (e.g., channel tabs, hardware imperfections)
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Solution 1: Two-phase Training Strategy

Transmitter
Stochastic
Channel
Model

Receiver

Phase I: End-to-end training on stochastic channel model

Training

Phase II: Receiver finetuning on physical channel

Transmitter Physical
Channel Receiver

Training

Sebastian Cammerer Learning to Communicate March 11, 2019 12/28



w
w

w
.in

ue
.u

ni
-s

tu
tt

ga
rt

.d
e

Institute of Telecommunications

Motivation Autoencoder Extensions Results Conclusion

Solution 2: Reinforcement Learning[1]

• The transmitter observes the state s ∈M = [1, . . . ,M],
• ...takes the action x = fθ t (s),
• ...and observes the reward log [ps]s ,−l
• Problem: argmaxθ t

E [log [ps]s] = argminθ t
E [l]

[1]F. Aoudia, J. Hoydis. "Model-free Training of End-to-end Communication
Systems." arXiv preprint, 2018
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Solution 2: Reinforcement Learning[2]

[2]F. Aoudia, J. Hoydis. "Model-free Training of End-to-end Communication
Systems." arXiv preprint, 2018
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Adaptivity - How to Acquire Training Data?

4 5 6 7 8 9 10 11 12 13
10−6

10−5

10−4

10−3

10−2

10−1

SNR [dB]

pr
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E
R

Baseline: no Finetuning

→ From errors one learns
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Adaptivity - How to Acquire Training Data?
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Label Recovery[3]

u Conv.
Enc

OFDM-
TX

Channel
fch(x, t)

Alteration

Pre-EQ OFDM-
RX Vit. Dec û

Conv.
Re-Enc

y, x̂, x̃

SGD [argminθ `(x̂, x̃)]

x

y
ỹ x̃

θ

x̂ û

x̃ = frx(y,θ)

TX

CH

RX

← back-propagation

IQ TX
(βIQ)

non-lin
(γNL)

. . . +

N (0,σ2)

IQ RX
(βIQ)

non-lin
(γNL)

• Physical channel has no gradient (!)
→ Only receiver can be finetuned

[3]S. Schibisch et al. "Online Label Recovery for Deep Learning-based
Communication through error correcting codes", ISWCS, 2018
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Conv.
Re-Enc

y, x̂, x̃

SGD [argminθ `(x̂, x̃)]

x

y
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Conv.
Re-Enc

y, x̂, x̃

SGD [argminθ `(x̂, x̃)]

x
y
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Adaptivity - IQ Imbalance

• SGD-based training is performed on-the-fly:
N∆t = 5,000 OFDM symbols per time step ∆t

10−3.5

10−3

10−2.5

θ

update

pr
e-

E
C

C
S

E
R

TX IQ-Imb
RX IQ-Imb

n n+∆t n+2∆t n+3∆t n+4∆t
0.4

0.5

0.6

time

β
IQ
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θ

update
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Synchronization Problems [4]

Problem: SFO between Transmitter and Receiver:
• Problem for block-based system→ messages skipped or

repeated→ insertion and deletion channel
• How to synchronize an AE symbol stream?

[4]S. Dörner et al. "Deep Learning-based Communication Over the Air", IEEE
J-STSP, 2018
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Synchronization Problems [4]

Problem: SFO between Transmitter and Receiver:
• Problem for block-based system→ messages skipped or

repeated→ insertion and deletion channel
• How to synchronize an AE symbol stream?

Solution 1: Assisting Offset Estimation Neural Network
• Additional NN can skip or repeat samples
Sample Stream

y1,y2, . . .

Offset Estimation NN

Repeated Sample Skipped Sample

i2 + îb+2
îb+2 =−1

i1 + îb+1
îb+1 = 0

i+ îb
îb =+1

. . . N−2(`−1)Nmsg . . .

. . . . . .

[4]S. Dörner et al. "Deep Learning-based Communication Over the Air", IEEE
J-STSP, 2018
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Synchronization Problems [4]

Problem: SFO between Transmitter and Receiver:
• Problem for block-based system→ messages skipped or

repeated→ insertion and deletion channel
• How to synchronize an AE symbol stream?

Solution 2: OFDM with cyclic prefix (CP)
• CP allows easy synchronization

AE
TX IF

FT
wFFT

CP
Add

`CP

Multipath
Channel

CP
SyncFF

T

wFFT

AE
RX

s
∈MwFFT

X

∈ CwFFT× n
2

XOFDM

∈ C
n
2×wFFT

XOFDM,CP ∈ C
n
2×(wFFT+`CP)

y ∈ C

YOFDM

∈ C
n
2×wFFT

Y

∈ CwFFT× n
2

ŝ
∈MwFFT

[4]S. Dörner et al. "Deep Learning-based Communication Over the Air", IEEE
J-STSP, 2018
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OFDM-Extensions [5]

Several advantages:
• Robustness against sampling synchronization errors
• Single-tap equalization
• Moderate training complexity (independent sub-carrier

modulation)
• Can be embedded in exiting AE setup
• Full compatibility with existing schemes

s1

s2

s3

swFFT−2

swFFT−1

swFFT

AE TX

AE TX

AE TX

AE TX

AE TX

AE TX

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

t

f

IF
FT

XOFDM

1 1 2 3 4 1 2 3 4

2 n
2 +1 complex symbols

pilot Xi Xi+1

[5]A. Felix et al. "OFDM-Autoencoder for End-to-End Learning of Communications
Systems", SPAWC, 2018
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3 From Theory to Practical Over-the-Air Transmission

4 Results for Over-the-air Transmission
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Simulated Performance

0 5 10 15 20 25 30
10−3

10−2

10−1

100

SNR [dB]

B
LE

R

Autoencoder without EQ
Autoencoder MMSE-EQ
Baseline QPSK MMSE-EQ

Transmission over 5-tap multi-path channel
• 1 pilot symbol per 8 OFDM symbols
• Autoencoder outperforms QPSK baseline
• Autoencoder learns MMSE equalization
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Learned IQ-Symbol Constellations

Average Power Normalization (with explicit pilot):
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Learned IQ-Symbol Constellations

Average Power Normalization (with explicit pilot):

Average Power Normalization (without explicit pilot):

• → superimposed pilot
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Measurement Setup

PC1: SDR
transmitter

PC2: SDR
receiver

GPU-accelerated
NN developement environment

LAN

Transmitter and Receiver PCs
• Using USRP software defined radios with GnuRadio
• Connected via LAN to development server

Measurement Process
• Transmission of long message sequence by transmitter
• Recording of whole sequence by receiver
• Offline decoding by GPU-accelerated server
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Over-the-Air Measurement Results

56 58 60 62 64 66 68 70
10−5

10−4

10−3

10−2

10−1

100

Transmit gain [dB]

B
LE

R

GnuRadio DQPSK
Autoencoder
Finetuned Autoencoder

• 46m LOS channel, same information rate and same conditions for GnuRadio
DQPSK and AE system

• The setup uses a single-carrier system (no OFDM)
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Reinforcement Learning Over-the-Air

40 42 44 46 48 50 52 54 56 58 60
10−5

10−4

10−3

10−2

10−1

100

Transmit gain [dB]

B
LE

R

RL n = 4
Supervised n = 4
QPSK n = 4+1pilot

• 5m LOS channel, same information rate and same conditions for QPSK and
AE system

• OFDM-based system
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Reinforcement Learning Over-the-Air

40 42 44 46 48 50 52 54 56 58 60
10−5

10−4

10−3

10−2

10−1

100

Transmit gain [dB]

B
LE

R

RL n = 4
Supervised n = 4
RL n = 5
Supervised n = 5
QPSK n = 4+1pilot

• 5m LOS channel, same information rate and same conditions for QPSK and
AE system

• OFDM-based system
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Agenda

1 Motivation

2 Learning to Communicate: The Autoencoder

3 From Theory to Practical Over-the-Air Transmission

4 Results for Over-the-air Transmission

5 Conclusion
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Conclusion

• World’s first over-the-air communication system where signal
processing is solely based on neural networks

• Proof of concept as SDR implementation
• Major challenges:

Unknown channel gradient→ RX finetuning or RL training
Training complexity: enhanced network structure
How to synchronize? → OFDM-extensions

• Future steps:
Theoretical analysis: how good is the system really? Spectral
efficiency?
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Thank you for your attention!

For details:
• S. Dörner, S. Cammerer, J. Hoydis, S. ten Brink, "Deep Learning-based

Communication Over the Air", arXiv:1707.03384, 2017
• Google Colab Notebook - Autoencoders - Learning to communicate
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Upgrade to Sequence Autoencoder

st−` TX

R
→

C xt−`

st TX

R
→

C xt

st+` TX

R
→

C xt+`

Channel





ŝt

Temporal Extension
• Problem: temporal dependencies (message st influenced by

messages st−1 and st+1)
• Solution: multiple transmitter outputs concatenated
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Upgrade to Sequence Autoencoder

st−` TX

R
→

C xt−`

st TX

R
→

C xt

st+` TX

R
→

C xt+`

Channel





ŝtPE
y

C
→

R

R
→

C

h

×()l2
l1

concatenate RX

C
→

R

ŝt

Feature Extractor

Phase Estimator

Slicer

FE

C
→

R

R
→

C

f

Sequence Decoder (SD)

Receiver Extension
• FE: extract features on sequence including multiple messages
• PE: estimate phase on sequence including multiple messages
• expert knowledge: complex phase shift by estimated phase h
• → same concept but more sophisticated receiver-NN
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Dealing with Sample Frequency Offset

Problem: SFO between Transmitter and Receiver:
• more or less samples recorded than transmitted
• problem for block-based system→ messages skipped or

repeated→ insertion and deletion channel

Solution: Assisting Offset Estimation Neural Network
• can skip or repeat samples
Sample Stream

y1,y2, . . .

Offset Estimation NN

Repeated Sample Skipped Sample

i2 + îb+2
îb+2 =−1

i1 + îb+1
îb+1 = 0

i+ îb
îb =+1

. . . N−2(`−1)Nmsg . . .

. . . . . .
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Dealing with Sample Frequency Offset

Problem: SFO between Transmitter and Receiver:
• more or less samples recorded than transmitted
• problem for block-based system→ messages skipped or

repeated→ insertion and deletion channel

Solution: Assisting Offset Estimation Neural Network
• can skip or repeat samples
Sample Stream

y1,y2, . . .

Offset Estimation NN

Repeated Sample Skipped Sample

i2 + îb+2
îb+2 =−1

i1 + îb+1
îb+1 = 0

i+ îb
îb =+1

. . . N−2(`−1)Nmsg . . .

. . . . . .
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Autoencoder NN Layer Structure

on
e-

ho
te

m
be

dd
in

g
(M

=
2k )

s

input layer

hidden layer

hidden layer

output layer

normalization

channel

input layer

hidden layer

hidden layer

ŝ

output layer

NN transmitter NN receiver

ar
g

m
ax

b

x
∈
C

n
( ∈R

2n
)

y
∈
C

n
( ∈R

2n
)

autoencoder

bŝ1

bŝ2

bŝ3

bŝ4

bŝ5

bŝM−1

bŝM−2

bŝM−3

bŝM−4

bŝM
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Physical Layer Signals

Sent Sample Sequence:

t

Re(x)

messages st ∈M AE samples DQPSK samples AE symbols DQPSK symbols
12 224 103 177 210 214 227 88 239 100 4

Received Sample Sequence:

t

Re(y)
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Synthetic LOS Channel Model

x Upsampling ∗

grrc(t− τoff)

×

ej(2πt∆ϕ+ϕoff)

AWGN y
xrrc xcfo
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GnuRadio Measurement Setup

file source
RRC

resampler SDR sink SDR source file sink

file source
RRC

resampler

dynamic
channel
model

AWGN AGC file sink

GNU Radio testbed models for autoencoder transmissions

autoencoder sender model autoencoder receiver model

dynamic channel model for autoencoder BER simulations

IQ-symbols IQ-samples IQ-samples

IQ-symbols IQ-samples IQ-samples

file source DQPSK
modulator SDR sink SDR source file sink

file source DQPSK
modulator

dynamic
channel
model

AWGN AGC file sink

GNU Radio testbed models for DQPSK transmissions

DQPSK sender model DQPSK receiver model

dynamic channel model for DQPSK BER simulations

bytes IQ-samples IQ-samples

bytes IQ-samples IQ-samples

GNU Radio DQPSK baseline demodulation model

file source DQPSK
demodulator file sink

bytesIQ-samples
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Sample Frequency Offset Impact

k

Re{y}

k

Re{y}

Ts Tsymbol

Ts Tsymbol

symbols {1,1,-1,-1}
samples, τoff = 0
samples, τoff = 2Ts

samples, τoff =−2Ts

samples, τoff = Ts

samples, τoff =−Ts

[−τbound,max,τbound,max]

τoff > Ts = τbound

τoff <−Ts =−τbound

SD: [−τbound,τbound]

OE’s decision impact to an exemplary window slice of length Nseq = 17:

no offset
î = 0

repeat sample
î =−1

skip offset
î = 1

i
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Development Server Setup

inupc100

®

i7-4790KGeForce TITAN Xp

®

i7-4790K

®

i7-4790K

®

i7-4790K

®

i7-4790K

®

i7-4790K

®

i7-4790K

®

i7-4790K

https://inupc100:8888 https://inupc100:8889

keras keras
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