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Industrial Control System in the World
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What type of ICS products are vulnerable:
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• Target – Siemens S7-300/400/1200 PLC

• S7 Packet

• PDU-types:

• 0x01 – Request

• 0x02 – Acknowledgement

• 0x03 – Response

• 0x07 – User Data

Siemens ICS Products

Mohammad Reza Norouzian (TUM) | Chair for IT Security 4



• Snort rules 

• Bro has no rule for S7 

• Suricata no rules too!

• Just Modbus signatures

Needs – S7 IDS rules!
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• Reconnaissance

• Authentication bypass

• CPU stop and start

• Brute-force

• Command injection and response

• Denial of service (DoS)

• Memory read and write logic

• Man in the middle (MITM)

• Attacks against PLC firmware

Network Attacks against ICS
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• Attack ICS devices!

• Reconnaissance

• Authentication bypass

• CPU stop and start (command control)

Multi Stage Attack - IUNO Scenario
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• The state of the art in detecting 

scanners is surprisingly limited. 

Existing schemes have difficulties 

catching all but high-rate scanners 

and often suffer from significant 

levels of false positives!

• What about the reconnaissance 

attacks for SCADA world?

• Gathering Information from the 

PLC with a specific commands!

• Firmware version, Serial 

number, module name, …

Reconnaissance Attack
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• Try to bypass authentication!

• Brute force with dictionary attack

• Try to stop PLC

Brute Force and Command Control Attack
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• Anomaly Detection on Industrial Control System (ICS)

o Classify benign and malicous activities

• Signature-based (Misuse) detection

• Anomaly detection using Machine Learning

• Challenges of Using Machine Learning

o Lack of TrainingData

o Diversity of Network Traffic

o High Cost of Errors

Problem?
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Our Main Focus andApproach

• Anomaly Detection on ICS

o Host based

• Don’t have control on PLCs and field devices

o Network based

• More scalable
IDS
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Industrial Network Traffic Analysis Framework

Machine Learning Anomaly basedFramework

Roadmap
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• ICS Network Traffic Feature Extractor

o Python and Tshark

o S7 Communication Protocol, ProfiNet IO/RT

• Why?

o Feed features into anomaly detection framework

• Feature Selection!

o Identifying Intended features that help to classify

benign from malicious traffic

o It can select the best combination of features to

increase accuracy and decrease FP/FN

Industrial Network Traffic Analysis Framework
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Having Malicious Traffic
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NADICSArchitecture
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Anomaly Detection Big Picture
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ML Algorithms Module
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NADICS Sample Results
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Dataset Currently in Use

TRAINING
157,157 samples

TESTING
76,270 samples

# FEATURES
39
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• Improving accuracy by automatically only selecting relevant features

• Requiring less data

• Reducing complexity of our model

Feature Selection
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Feature Importance
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Implemented Algorithms for Imbalances

Source: https://www.analyticsvidhya.com/blog/2017/03/imbalanced-classification-problem/
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Future ML ModuleArchitecture
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• Generate more attacks

• Implement deep learning

• Learning the Normality! 

Further Improvements
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Thank You!


