Anomaly Detection on Industrial Control Systems

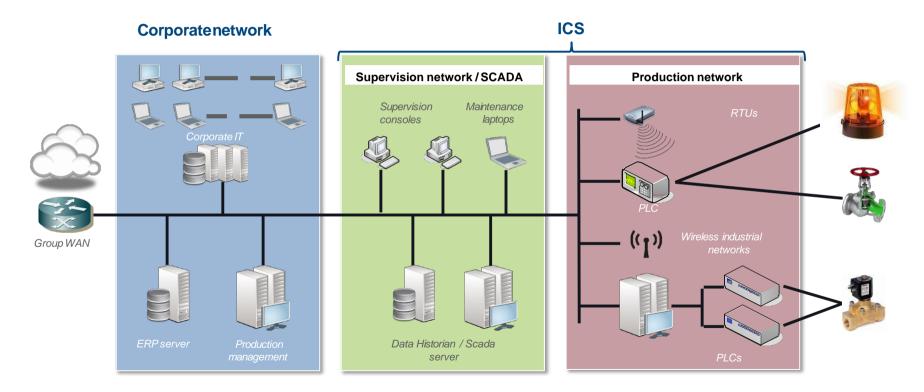
Mohammad Reza Norouzian

Technische Universität München

Fakultät für Informatik

Lehrstuhl für IT Sicherheit

12. July 2018



Industrial Control System in the World

What type of ICS products are vulnerable:

ΠП

Siemens ICS Products

- Target Siemens S7-300/400/1200 PLC
- S7 Packet

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-
magic 0x32 pdu-type reserved
+-
request id parameters length
+-
data length error code (only for pdu 2&3)
+-+-+++++++++++++++++++++++++++++++++++
. parameters .

. data .

- PDU-types:
 - 0x01 Request
 - 0x02 Acknowledgement
 - 0x03 Response
 - 0x07 User Data

Needs – S7 IDS rules!

- Snort rules
- Bro has no rule for S7
- Suricata no rules too!
- Just Modbus signatures

Alert on a command that was is via s7-enumerate Redpoint Nmap NSE on TCP/102
alert tcp any any -> any 102 (content: "|32 07 00 00 00 00 00 08 00 08"; offset: 0; depth: 10; content: "|00 01 12 04 11 44 01 00|"; offset: 11; depth: 8; msg:
"S7 Enumerate Redpoint NSE Request CPU Function Read SZL attempt";sid:1111301;priority:3;)
Alert on a command that was is via s7-enumerate Redpoint Nmap NSE on TCP/102 from Non Authorized Hosts
alert tcp !\$S7_CLIENT any -> \$S7_SERVER 102 (content: "|32 07 00 00 00 00 00 00 00 00 00 00 08 00 08|"; offset: 0; depth: 10; content: "|00 01 12 04 11 44 01 00|"; offset: 11;
depth: 8; msg: "S7 Enumerate Redpoint NSE Request CPU Function Read SZL attempt From Non Authorized Hosts"; sid:111130; sprint; sid: 111; sprint; sid: 111; sprint; sprint; sid: 111; sprint; spri

alert modbus !\$MODBUS_CLIENT any -> \$MODBUS_SERVER 502 (modbus: function 0x05; msg:"Modbus Write Single Coil First"; sid:11; xbits:set,modbus,track ip_src;) alert modbus !\$MODBUS_CLIENT any -> \$MODBUS_SERVER 502 (modbus: function 0x07; msg:"Modbus Read Exception After Write"; sid:12; xbits:isset,modbus,track ip_src;)

Network Attacks against ICS

- Reconnaissance
- Authentication bypass
- CPU stop and start
- Brute-force
- Command injection and response
- Denial of service (DoS)
- Memory read and write logic
- Man in the middle (MITM)
- Attacks against PLC firmware

Multi Stage Attack - IUNO Scenario

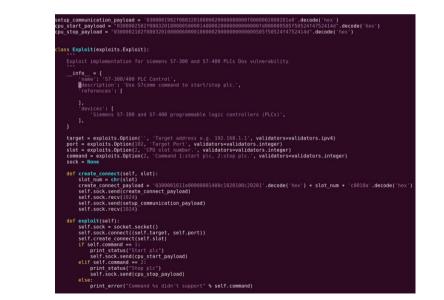
ТШ

- Attack ICS devices!
 - Reconnaissance
 - Authentication bypass
 - CPU stop and start (command control)

Reconnaissance Attack

ТШ

- The state of the art in detecting scanners is surprisingly limited.
 Existing schemes have difficulties catching all but high-rate scanners and often suffer from significant levels of false positives!
- What about the reconnaissance attacks for SCADA world?
 - Gathering Information from the PLC with a specific commands!
 - Firmware version, Serial number, module name, ...

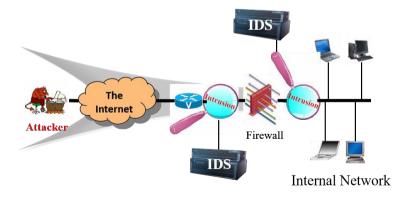

Source	Destination	Protocol			Length Info
172.16.159.130	87.140.57.73	TCP	33696	102	74 33696 - 102 [SYN] Seg=0 Win=29200 Len=0 MSS=1460 SACK PERM=1 TSval=2008167851 TSecr=0 WS=120
87.140.57.73	172.16.159.130	TCP	102	33696	60 102 - 33696 [SYN, ACK] Seg=0 Ack=1 Win=64240 Len=0 MSS=1460
172.16.159.130	87.140.57.73	TCP	33696	102	54 33696 -> 102 [ACK] Seg=1 Ack=1 Win=29200 Len=0
172.16.159.130	87.140.57.73	COTP	33696	102	76 CR TPDU src-ref: 0x0001 dst-ref: 0x0000
87.140.57.73	172.16.159.130	TCP	102	33696	60 102 - 33696 [ACK] Seg=1 Ack=23 Win=64240 Len=0
87.140.57.73	172.16.159.130	COTP	162	33696	76 CC TPDU src-ref: 0x4431 dst-ref: 0x0001
172.16.159.130	87.140.57.73	TCP	33696	102	54 33696 - 102 [ACK] Seg=23 Ack=23 Win=29200 Len=0
172.16.159.130	87.140.57.73	S7COMM	33696	102	79 ROSCTR:[Job] Function:[Setup communication]
87.140.57.73	172.16.159.130	TCP	102	33696	60 102 - 33696 [ACK] Seg=23 Ack=48 Win=64240 Len=0
87.140.57.73	172.16.159.130	S7COMM	102	33696	81 ROSCTR: [Ack_Data] Function: [Setup communication]
172.16.159.130	87.140.57.73	S7COMM	33696	102	87 ROSCTR: [Userdata] Function: [Request] -> [CPU functions] -> [Read SZL] ID=8x0011 Index=0x0000
87.140.57.73	172.16.159.130	TCP	102	33696	60 102 → 33696 [ACK] Seg=50 Ack=81 Win=64240 Len=0
87.140.57.73	172.16.159.130	STCOMM	102	33696	179 ROSCTR: [Userdata] Function: [Response] -> [CPU functions] -> [Read SZL] ID=0x0011 Index=0x00
172.16.159.130	87.140.57.73	S7COMM	33696	182	87 ROSCTR: [Userdata] Function: [Request] -> [CPU functions] -> [Read SZL] ID=9x001c Index=0x0000
87.140.57.73	172.16.159.130	TCP	102	33696	60 102 - 33696 [ACK] Seg=175 Ack=114 Win=64240 Len=0
87.148.57.73	172.16.159.130	S7COMM	102	33696	333 ROSCTR: [Userdata] Function: [Response] -> [CPU functions] -> [Read SZL] ID=0x001c Index=0x00
172.16.159.130	87,140,57,73	TCP	33696	182	54 33606 - 102 [FIN, ACK] Seg=114 Ack=454 Win=30016 Len=0
87.140.57.73	172.16.159.130	TCP	182	33696	60 102 33696 [ACK] Seg=454 Ack=115 Win=64239 Len=0
172.16.159.130	87,140.57,73	TCP	33698	102	74 33696 - 102 [SYN] Seg=0 Win=29200 Len=0 MSS=1460 SACK PERM=1 TSval=2008167994 TSecr=0 WS=120
87,140.57.73	172.16.159.130	TCP	102	33698	60 102 - 33696 [SYN, ACK] Seg=0 Ack=1 Win=64240 Len=0 MSS=1460
172.16.159.130	87.149.57.73	TCP	33698	182	54 33698 - 102 [ACK] Seg=1 Ack=1 Win=29200 Len=9
87,140.57.73	172.16.159.130	TCP	102	33696	60 102 33696 [FIN, PSH, ACK] Seg=454 Ack=115 Win=64239 Len=0
172.16.159.130	87.140.57.73	TCP	33696	102	54 33696 → 102 [ACK] Seg=115 Ack=455 Win=30016 Len=0
172.16.159.130	87,140.57.73	COTP	33698	102	76 CR TPDU src-ref: 0x0001 dst-ref: 0x0000
87.140.57.73	172.16.159.130	TCP	102	33698	60 102 - 33698 [ACK] Seg=1 Ack=23 Win=64240 Len=0
87.149.57.73	172.16.159.139	TCP	-102	33698	60 102 - 33698 [FIN, PSH, ACK] Seg=1 Ack=23 Min=64240 Len=0
172.16.159.130	87.140.57.73	S7COMM	33698	102	79 ROSCTR:[Job] Function:[Setup communication]
87.140.57.73	172.16.159.130	TCP	102	33698	60 102 - 33698 [ACK] Seg=2 Ack=48 Win=64240 Len=0
172.16.159.130	87.140.57.73	S7COMM	33698	102	87 ROSCTR: [Userdata] Function: [Request] -> [CPU functions] -> [Read SZL] ID=0x0011 Index=0x0000
87.148.57.73	172.16.159.130	TCP	102	33698	60 102 - 33698 [ACK] Seq=2 Ack=81 Win=64207 Len=0
172.16.159.130	87.140.57.73	TCP	33698	192	54 33698 - 102 [FIN, ACK] Seq=81 Ack=2 Min=29200 Len=0
172.16.159.130	87.140.57.73	TCP	33700	102	74 33700 - 102 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK PERM=1 TSval=2008167927 TSecr=0 WS=120
87.140.57.73	172.16.159.130	TCP	102	33698	60 182 - 33698 [ACK] Seg=2 Ack=82 Win=64206 Len=0
87.140.57.73	172.16.159.130	TCP	102	33760	60 182 - 33700 [SYN, ACK] Seg=0 Ack=1 Win=64240 Len=0 MSS=1400
172.16.159.130	87.140.57.73	TCP	33700	102	54 33700 - 102 [ACK] Seg=1 Ack=1 Win=29200 Len=0

Brute Force and Command Control Attack

- Try to bypass authentication!
- Brute force with dictionary attack
- Try to stop PLC

Problem?

- Anomaly Detection on Industrial Control System (ICS)
 - Classify benign and malicous activities
 - Signature-based (Misuse) detection
 - Anomaly detection using Machine Learning
- Challenges of Using Machine Learning
 - o Lack of Training Data
 - Diversity of Network Traffic
 - $\circ \quad \text{High Cost of Errors}$

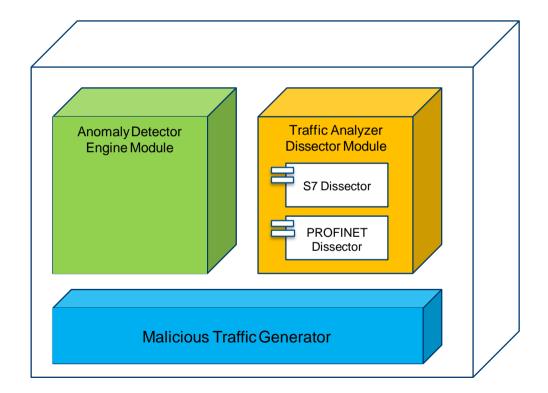


Our Main Focus and Approach

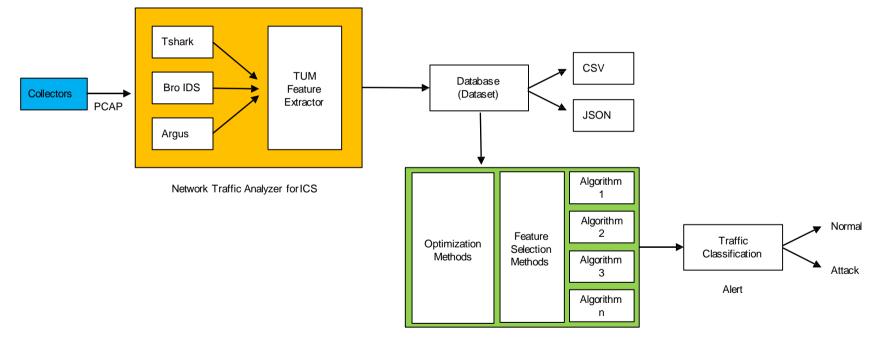
- Anomaly Detection on ICS
 - \circ Host based
 - Don't have control on PLCs and field devices
 - o Network based
 - More scalable

Industrial Network Traffic Analysis Framework

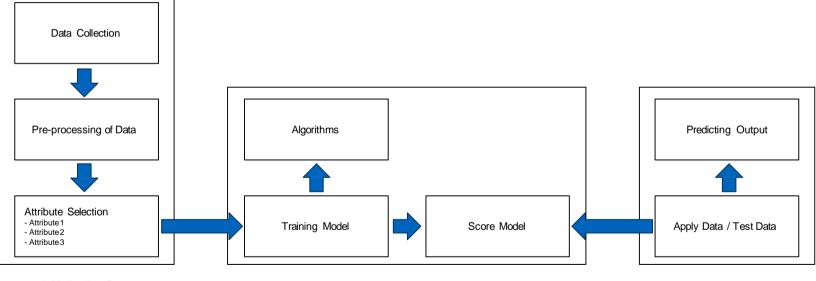
Machine Learning Anomaly based Framework


Industrial Network Traffic Analysis Framework

- ICS Network Traffic Feature Extractor
 - Python and Tshark
 - S7 Communication Protocol, ProfiNet IO/RT
- Why?
 - Feed features into anomaly detection framework
- Feature Selection!
 - Identifying Intended features that help to classify benign from malicious traffic
 - It can select the best combination of features to increase accuracy and decrease FP/FN

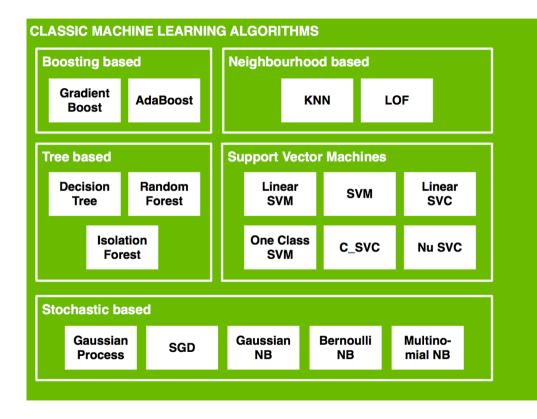

Having Malicious Traffic

NADICS Architecture



Network Anomaly Detection for ICS Engine (NADICS)

Anomaly Detection Big Picture



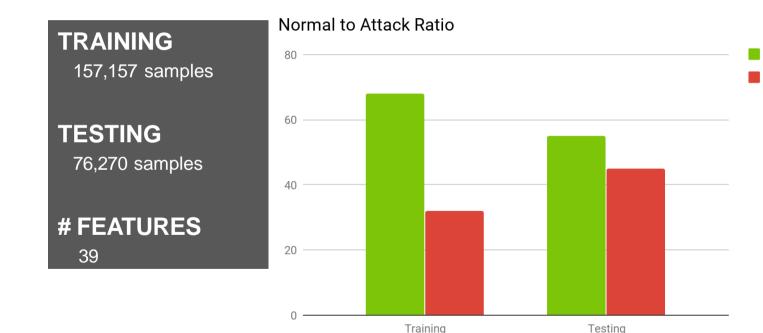
Initialization Step

Learning Step

ML Algorithms Module

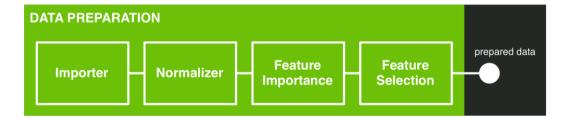
NADICS Sample Results

		NE LEARNIN FALL 1.2 :		1	¥ ¥ ¥	
# ###################	###########	#######################################	###########		5 C	
READING CONFIG FILE						
IS PREPROCESSE	D DATA IS	STORED ON	DISK?	TRUE		
ENCODING DATA SAVING PREPARE		T TO DISK.				3.579 seconds. 1.188 seconds.
TRAINING SET: TESTING SET:						
TRAINING SIZE: TESTING SIZE: FEATURES:						
NORMALIZING DA	TA SETS			DONE	in	0.278 seconds.
Classification	algorith	m: RandomF	orest			
TRAINING THE M	ODEL					7.6 seconds. 0.641 seconds.
Accuracy Score Classification P	report:	recall	f1-score	support		
0 1	0.99			37000 39270		
avg / total	0.97	0.97	0.97	76270		
Time trainin Time predict Accuracy sco Weighted pre Weighted f1 Weighted rec Weighted sup	g [s] ion [s] re cision score	0.6411	rest 			
+ ################################	######################################	######################################	NGINE DOWN		¥ ¥ ¥	

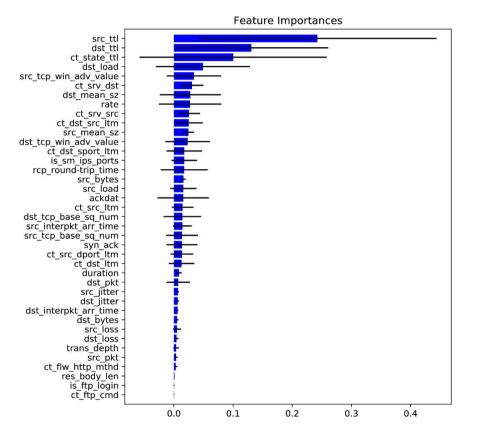

1	DecisionTree	RandomForest	SGD	KNeighbors	Linear_SVC
Time training [s]	3.8016	7.5289	0.4847	80.3461	10.2674
Time prediction [s]	0.0818	0.6131	0.0691	42.7127	0.069
Accuracy score	0.9563	0.9669	0.7799	0.8675	0.7883
Weighted precision	0.9575	0.9683	0.8441	0.8676	0.8169
Weighted f1 score	0.9562	0.9669	0.7673	0.8674	0.7821
Weighted recall	0.9563	0.9669	0.7799	0.8675	0.7883
Weighted support	None	None	None	None	None

Dataset Currently in Use

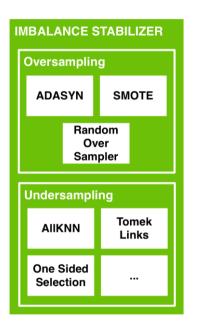
Normal [%]

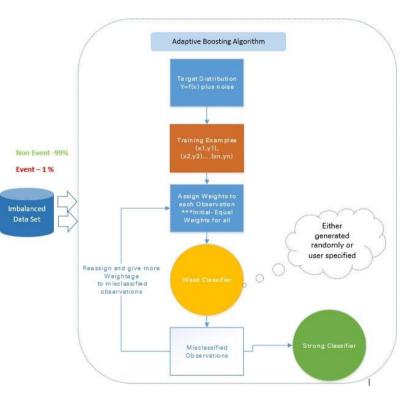

Attack [%]

Feature Selection

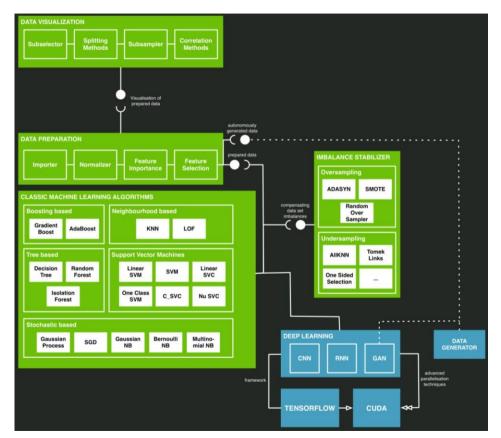


- Improving accuracy by automatically only selecting relevant features
- Requiring less data
- Reducing complexity of our model


Feature Importance



Implemented Algorithms for Imbalances



Source: https://www.analyticsvidhya.com/blog/2017/03/imbalanced-classification-problem/

Future ML Module Architecture

Further Improvements

ТΠ

- Generate more attacks
- Implement deep learning
- Learning the Normality!

Thank You!

Mohammad Reza Norouzian (TUM) | Chair for IT Security