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Security Analytics

e Detection (Preparedness)

o Rule-based detection - easy to evade

o Attacks have more variety - difficult to capture
e Analysis (Auditing, Forensics)

o Benefits from Big Data - extract information

o Use information retrieval methods to analyze

threats M
Qod , Auditin®

Security in
highly connected
IT systems

Pernul, G., Schryen, G., Schillinger. R.,2017, Security in Highly Connected IT
Systems, Results of the Bavarian Research Alliance FORSEC, Uni Regensburg
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Anomaly-based approaches

e Used in many areas to analyze outlier 40 . Attacker
events: medical image analysis, video Valid trace - training
surveillance, fault detection; methods 20 ..;:-':-‘.;'3 .. -.i..va”,? t.race .
translate to IT security g 4
e Unsupervised vs. Supervised Anomaly 0 ) C
Detection o0 ' 12
e Multiple conditions: unbalanced datasets,
low number of labeled data, adversarial 40 ‘ ‘ ‘
-20 0 20

noise, resource constraints...
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Anomaly-based approaches

e We use anomaly-based approaches in security analytics
a. Overcome the rigid signature-based approaches (e.g. Yara)
e We develop methods for anomaly-based approaches in constrained environments:
a. Resource constraints: low memory, bandwidth
b. Environment constraints: adversarial environment, online learning
e We test our methods using large-scale malware sample sets and other gathered data
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Topic Models for Malware Analysis

Dynamic Malware Analysis - generates behavioral data for malware samples
We need to extract relevant information from this data
e Topic Modeling -> known method from Natural Language Processing
o Information retrieval from document data
o Detection of high level topics from low level events
o Semantics-aware -> topics can have meaning
e Large-scale -> from thousands to millions of documents for large malware sample sets
o VirusTotal: millions of new malware samples per day
o Requires improvements in information retrieval
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Topic Models for Malware Analysis [ Ee |
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Topic Models for Malware Analysis

e We use topic modeling and semi-supervised learning to retrieve latent topics'1

Registry manipulation Memory management File manipulation Process Handling
NtWriteFile VirtualAllocEx NtReadFile OpenProcess
RegOpenKeyExW VirtualQueryEx NtWriteFile ReadProcessMemory
RegCloseKey VirtualQuery NtDelayExecution WriteProcessMemory
RegEnumValueW VirtualFreeEx LdrGetProcedureAddress  CloseHandle
RegQueryValueExW VirtualFree NtSetInformationFile LocalAlloc
LdrGetProcedureAddress LdrGetProcedureAddress NtCreateFile LocalFree
RegOpenKeyExA NtQueryDirectoryFile

e Topic models can be used as feature extractors, improve malware classification (97.5%
on F1 score compared to 88% using baseline methods)

[1] Kolosnjaiji, B., et al, 2016., Adaptive semantics-aware malware classification. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (pp. 419-439). Springer, Cham.
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Adversarial Attacks on Malware Detectors

e Neural Networks recently proposed for malware detection based on static features:
o Raw bytes
o Instruction sequences
o PE Import Table, other PE Metadata
e One example: Raff et al., 2017: Malware Detection by Eating a Whole EXE’
o However, neural networks are more vulnerable to adversarial examples

Byte values (integers)
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e malware
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Temporal N Fully
max pooling connected

False

Xa

[1] Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., & Nicholas, C. (2018). Malware Detection by Eating a Whole EXE, AAAI
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Adversarial Attacks on Malware Detectors

‘malicious program

Evasion attack on malware detectors
Neural networks especially vulnerable
o Small change in input —fast change in
classification results
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TUTI

Adversarial Attacks on Malware Detectors

Algorithm 1 Adversarial Malware Binaries

) EvaSion attaCk on malware detectorS1 Input: x, the input malware (with k informative bytes, and
d — k padding bytes); ¢, the maximum number of padding
bytes that can be injected (such that & + ¢ < d); T, the
maximum number of attack iterations.

Output: z': the adversarial malware example.

1: Set ¢ = x.

2: Randomly set the first ¢ padding bytes in .

3: Initialize the iteration counter ¢ = 0.

4: repeat

5% Increase the iteration counter ¢ <— ¢ + 1.

6: forp=1,...,qdo

7: Set j = p+ k to index the padding bytes.
8: Compute the gradient w; = —V 4 (x;).

9: Set n; =wj/||w]~||2.

10: fori=0;::. 255 do

11 Compute s; = nJT(ml — z;).

12: Compute d; = |[|m; — (2 + si - nj)||2.
13: end for

14: Set x; to arg min;,, - d;.

15: end for

16: until f(x) <0.50rt>T

[1] Kolosnjaiji et al., 2018, Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in '
17: return x

Executables, arXiv:1803.04173
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https://arxiv.org/abs/1803.04173

Adversarial Attacks on Malware Detectors
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[1] Kolosnijaiji, B., Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., Roli, F., 2018, Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in
Executables, arXiv:1803.04173
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Communication-efficient Learning

e Multiple annotators label the data, some are
more reliable than others, some could be
malicious

e How to select a minimal set of annotators and

save budget while optimizing the accuracy?
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Communication-efficient Learning
e Select most reliable annotators? Difficult,
every annotator has different expertise

e \We want to have a joint optimization model
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Communication-efficient Learning .
e We have input data x_, annotations z ., ground truth y_
e Goal 1: Minimize the loss w.r.t. the ground truth training set
e Goal 2: Minimize the loss w.r.t. the client annotations
° Make the annotator weight vector sparse -> select only a few clients

N M M
1 A A~
L(w,0) + =% 3 (Gnlog 3" vigms + (1 - ) log(1 — 3 vimi) +
n=1 i=1 i=1
M M
v; = client weight W 7 - 2 +IX |
; vector ' ;(J" ) | |
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Communication-efficient Learning

e Gradient-based optimization
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Communication-efficient Learning

Accuracy

Experiments on Amazon Mechanical Turk
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Behavior-based Authentication

e Entry authentication: password, PIN, fingerprint
o Prone to attacks
o Many times not used, inconvenient
e Continuous authentication: based on user sensor data
o Attractive alternative
o Needs to be trained online
o Model grows with the data
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TUTI

Behavior-based Authentication

e We design a behavior-based authentication e /
system:
o Data Collection from sensors g Anomaly
o Feature Engineering TTTTT T T
o Model: Budgeted One-Class SVM AL
o Anomaly Detector
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Behavior-based Authentication

e Model based on One-Class SVM '

1
Mming E o0 k(255 Z5)
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e Optimization while maintaining an upper bound on support vectors - Budgeted

learning
[1] Schélkopf, B., Williamson, R. C., Smola, A. J., Shawe-Taylor, J., & Platt, J. C. (2000). Support vector method for novelty detection. In
Advances in neural information processing systems(pp. 582-588).
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Behavior-based Authentication

e Evaluation on experiments with human subjects and typical smartphone
use case scenarios
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Conclusion

e High potential in machine learning methods for the purpose of IT security, as a
consequence of variety/volume of malware, noisy data
Additional constraints make the use of baseline approaches difficult

e Benefits from areas such as: adversarial learning, budgeted learning, approximate
inference, ensemble learning
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