
Chair of Communication Networks, Technical University of Munich **Automated Geography-Based Fixed Network Planning Tool**

Elena Grigoreva*, Carmen Mas Machuca, Wolfgang Kellerer

*e.grigoreva@tum.de

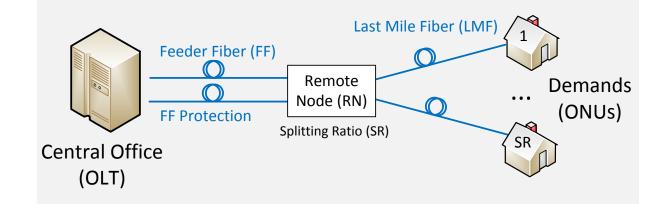
This work has been funded by the German Research Foundation (DFG) under grant numbers MA6529/2-1 and KE1863/4-1.

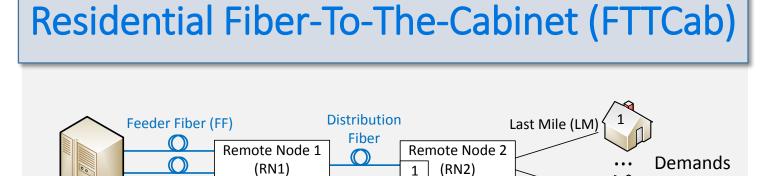
Fixed Network Planning

Plan:

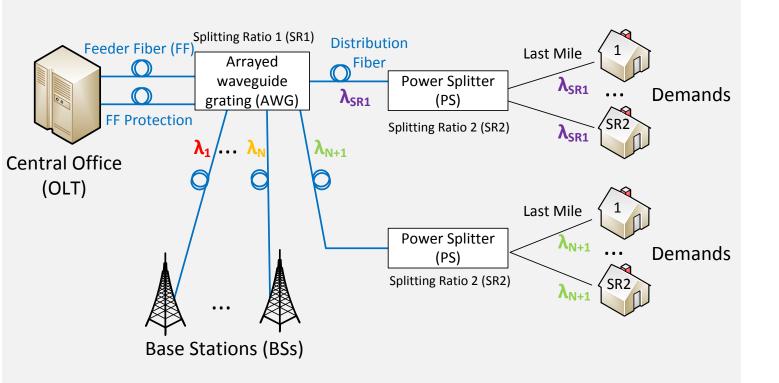
- **RN** placement
- **Fiber routing**

I. Dias, E. Grigoreva, C. Mas Machuca, L. Wosinska, E. Wong Energy-Efficient and Delay-Constrained Optical Backhaul for Intelligent Transport Systems under revisior


Trenching and installation of ducts.



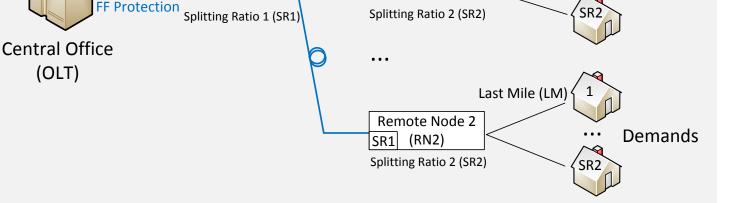
Fiber routing for the Day RSUs.


	Automated Planning Tool Informa	ation
General Information	Methodology ³	Cost Analysis Example
 Based on Geographic Information System (GIS) – ArcGIS¹ Real street topologies – Open Street Maps² Python-based implementation Ready to use tools with easy GUI 	 Assigning demands to a RN = clustering: Location-Allocation Problem with capacity constraint⁴ Cluster head defines the RN position Performed for every stage of the network Cut-off Shortest path routing: Relies on the street topology (not Euclidian distances)⁵ 	30000 25000 15000 15000 10000 5000 0 Working path cost Protection path cost
https://www.arcgis.com https://www.openstreetmap.org A. Shahid, C. Mas Machuca Dimensioning and Assessment of Protected Converged Optical Access Networks. IEEE Communications Magazine Vol. 55, No. 8, 2017 Location-allocation, <u>tp://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/algorithms-used-by-network-analyst.h</u> Dijkstra's algorithm, <u>tp://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/algorithms-used-by-network-analyst.h</u>	Outputs: • RNs locations, • Fiber and duct lengths availability and further analyses	Imf_duct10293.819270.2Imf0.40.7ff_duct4818.46142.7ff0.10.1E. Grigoreva, E. Wong, M. Furdek, L. Wosinska, C. Mas MachucaEnergy Consumption and Reliability Performance of Survivable Passive Optical Converged Networks: Public ITS Case Study. Journal of Optical Communications and Networking (JOCN) Volume: 9, Issue: 4, 2017, C98 - C108
	Implemented Planning Scenari	OS

Fiber-To-The-Building (FTTB)

Joint Fiber-To-The-Cabinet (FTTCab)

Splitting Ratio (SR):


- Dependent on the equipment: e.g., Power Splitter (PS) can have 2ⁿ ports
- With (80%) or without (100%) ports reserved for the future use
- Link-disjoint path protection
- Shortest path fiber

Greenfield: planning from scratch

• All possible RN locations, e.g., street intersections

Brownfield: reusing existing infrastructure

- RN locations constraint with existing ones •
- Duct reuse encouraging using the existing duct

Brownfield: Last Mile Copper \rightarrow Fiber

Copper:

- Calculated to get the possible RN2s locations for the fiber case to reuse
- RN2 in this case is ONU and a DSLAM
- Cut-off of 250m to 4000m

Fiber:

- The RN2 possible locations from the copper LM
- RN2 \rightarrow Power Splitter

Greenfield: Last Mile Fiber

- RN2 can be placed at any possible location
- Power Splitter at RN2

Joint Planning:

Physical infrastracture is shared between the residential users (time division multiplexing) and BSs (full wavelength).

NG-PON2 or Hybrid PON (HPON):

- RN1 is an AWG
- BSs and RN2 are clusterd together

Optical Access Seamless Evolution.

Technical Assessment and Comparison of Next- Generation Optical Access System Concepts, Deliverable 4.2.1. Technical report, 2011.