

Demo of the automated network planning tool

Elena Grigoreva <u>e.grigoreva@tum.de</u>

Advisors:
Carmen Mas Machuca
cmas@tum.de

Wolfgang Kellerer wolfgang.kellerer@tum.de

Fixed Network Planning

Problem Description

- •Fixed network planning solutions in academia:
 - Mostly based on geometric models¹
 - Not precise
- Not reproducable

Results are not comparable

Not usable for other analyses

Not transferrable to the other scenarios

Planning tool for reproducible, meaningful and extandable planning results

Fixed Network Planning

- Given:
 - City street topology,
 - Central Office location,
 - Demands,
 - Possible Remote Node (RN) locations,
 - Access Network Parameters

LKN

- Plan:
- RN locations
- Fiber routing
- Constraints:
- Cost, availability, delay
- Street length metric
- Minimize civil works (duct lengths)

Materials:

Fiber and cable lengths.

Civil works:

Trenching and installation of ducts.

Optical Backhaul for Intelligent Transport Systems: example

I. Dias, E. Grigoreva, C. Mas Machuca, L. Wosinska, E. Wong *Energy-Efficient and Delay-Constrained Optical Backhaul for Intelligent Transport Systems*. under revision

Cost Analysis Based on the Planning Results: Example

E. Grigoreva, E. Wong, M. Furdek, L. Wosinska, C. Mas Machuca

Energy Consumption and Reliability Performance of Survivable Passive Optical Converged Networks: Public ITS Case Study.

Journal of Optical Communications and Networking (JOCN) Volume: 9, Issue: 4, 2017, C98 - C108

Methodology¹

- Assigning demands to a Remote Node (RN) = clustering:
 - Location-Allocation Problem with capacity constraint²
 - Cluster head defines the RN position
 - Performed for every stage of the network
 - Cut-off
- Shortest path routing:
 - Relies on the street topology (not Euclidian distances)³
- Outputs:
- RNs locations,
- Fiber and duct lengths

Input for cost, availability and further analyses

Shahid, Arslan; Mas Machuca, Carmen:
 Dimensioning and Assessment of Protected Converged Optical Access Networks.
 IEEE Communications Magazine Vol. 55, No. 8, 2017

^{2.} Location-allocation, http://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/algorithms-used-by-network-analyst.htm

 $^{3. \ \} Dijkstra's \ algorithm, \ \underline{http://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/algorithms-used-by-network-analyst.htm}$

Planning Tool Demo

ТΙΠ

General Information

- Based on Geographic Information System (GIS) ArcGIS¹
- Real street topologies Open Street Maps²
- Python-based implementation
- Ready to use tools with easy GUI

Input street topologies example

Ottobrunn: suburban area

^{1. &}lt;a href="https://www.arcgis.com">https://www.arcgis.com

https://images-na.ssl-images-amazon.com/images/l/51K0DCKQ4FL.jpg