

Time-Varying Systems and Computations

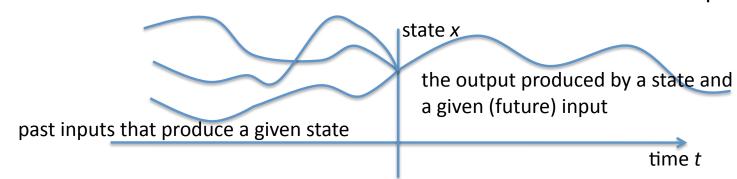
Unit 5.2

Klaus Diepold WS 2024

Hankel Operator

- Hankel Operator describes map from past input to future output
- We search for the state-space realization of T
- But ... what is this Hankel Operator good for?

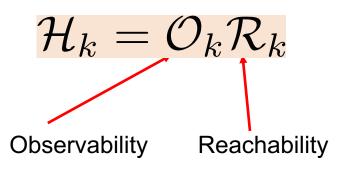
Nerode Equivalence

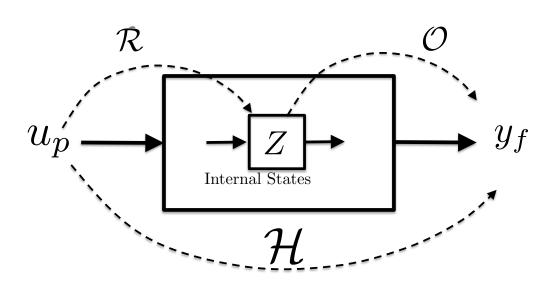


Data in state vector x – stores relevant from the past

Factoring the Hankel Operator

- Splitting up the Hankel operator
 - \mathcal{R} Input \rightarrow Internal States
 - O Internal States → Output
- Factoring Hankel Operator





Reachability/Observability

Reachability Matrix

$$\mathcal{R}_k = \begin{bmatrix} B_{k-1} & A_{k-1}B_{k-2} & A_{k-1}A_{k-2}B_{k-3} & \dots \end{bmatrix}$$

Observability Matrix

$$\mathcal{O}_k = \left[\begin{array}{c} C_k \\ C_{k+1} A_k \\ C_{k+2} A_{k+1} A_k \\ \vdots \end{array} \right]$$

Factoring the Hankel Operator

Hankel = Observability * Reachability =

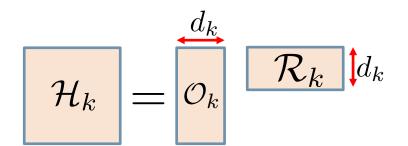
$$\begin{bmatrix} C_k B_{k-1} & C_k A_{k-1} B_{k-2} & C_k A_{k-1} A_{k-2} B_{k-3} & \dots \\ C_{k+1} A_k B_{k-1} & C_{k+1} A_k A_{k-1} B_{k-2} & C_{k+1} A_k A_{k-1} A_{k-2} B_{k-3} & \dots \\ C_{k+2} A_{k+1} A_k B_{k-1} & C_{k+2} A_{k+1} A_k A_{k-1} B_{k-2} & C_{k+2} A_{k+1} A_k A_{k-1} A_{k-2} B_{k-3} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} =$$

$$= \begin{bmatrix} C_k \\ C_{k+1}A_k \\ C_{k+2}A_{k+1}A_k \\ \vdots \end{bmatrix} \begin{bmatrix} B_{k-1} & A_{k-1}B_{k-2} & A_{k-1}A_{k-2}B_{k-3} & \dots \end{bmatrix}$$

Minimal Realizations

Factorization is minimal

$$\mathcal{H}_k = \mathcal{O}_k \mathcal{R}_k$$

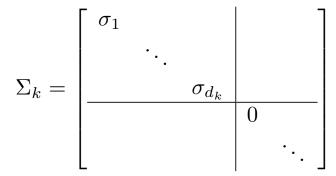


Dimension of State Space – dynamic degree – number of latches

$$d_k = \operatorname{rank} (\mathcal{H}_k)$$

E.g. use the Singular Value Decomposition

$$\mathcal{H}_k = (U_k \Sigma_k) \cdot V_k^T$$



Reachability/Observability

• Reachability Matrix with $\operatorname{rank} (\mathcal{R}_k) = d_k$ has d_k rows for all k \rightarrow system is fully reachable

$$\mathcal{R}_{kx} = \begin{bmatrix} B_{k-1} & A_{k-1}B_{k-2} & A_{k-1}A_{k-2}B_{k-3} & \dots \end{bmatrix}$$

- Observability Matrix with $\operatorname{rank} (\mathcal{O}_k) = d_k$ has d_k columns
 - → system is fully observable
- Minimal realization is fully observable and fully reachable

$$\mathcal{O}_k = \begin{bmatrix} C_k \\ C_{k+1}A_k \\ C_{k+2}A_{k+1}A_k \\ \vdots \end{bmatrix}$$

Summary

- Partitioning the Hankel map → Factoring the Hankel Operator
- Observability/Reachability Matrices
- Rank of Hankel Operator determines dimension of state space ("Kronecker Theorem" – Leopold Kronecker)
- Minimal Realization is fully reachable and fully observable