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1 Introduction

This chapter provides a short introduction to the notion of Semi-separable matrices. This matrix structure
occurs frequently with banded matrices or inverses thereof. While there exists a variety of definitions for
semi-separability I will focus on the notion that is in alignment with the theory of time-varying state-
space systems [2]. This approach allows for engineers to directly comprehend various concepts essential
in this context. A more comprehensive exposition to this topic is available in [2].

2 Separable Matrix

A separable function, given as a multivariate function T (x, y) is called separable, if it can be factorized
in two independent factors, i.e. when we have

TS(x, y) = P (x) ·Q(y).

In matrix terms, we express this separability as the matrix T being factorized into two rank-1 factors

TS = p · qT =



p1q1 p1q2 p1q3 . . . p1qn
p2q1 p2q2 p2q3 . . . p2qn

p3q1 p3q2 p3q3 . . .
...

...
...

...
. . .

...
pmq1 pmq2 pmq3 . . . pmqn

 . (1)

Note that the matrix TS is restricted to have rank-1. We encounter the concept of separability regularly in
the context of image processing, where we exploit this separability to implement image filtering operations
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more efficiently. A separable image filter allows us to first process all the rows of an image with a first 1-
dimensional filter, say, P (x) and then apply another 1-dimensional filter Q(y) to the columns of row-wise
filtered image.

3 Semi-separable Matrix

3.1 Representation

The concept of semi-separability [1] uses a restriction of the notion of separability (Equation 1) on the
upper or lower triangular part of a matrix. Using Matlab notation to represent the lower triangular part
of a separable matrix, we can denote the semi-separable (SS) matrix as

TSS = tril(p · qT ) =


p1q1

p2q1 p2q2

p3q1 p3q2 p3q3

...
...

...
. . .

pnq1 pnq2 pnq3 . . . pnqn,

 (2)

where p and q denote vectors of dimension n.

Only half the matrix is covered by the notion of separability, hence the name semi-separability. Observe,
that this matrix TSS may have full rank, in in contrast to the matrix T from the previous section. We
can also observe that all the submatrices that we can build in the strictly lower triangular part of matrix
TSS have rank 1.

Alternatively, we can also denote an upper triangular structure based on the concept of semi-separability.

TSS = triu(v · wT ) =


v1w1 v1w2 v1w3 . . . v1wn

v2w2 v2w3 . . . v2wn

v3w3 . . . v3wn

. . .
...

vnwn

 (3)

Again, this matrix may also exhibit full rank. Slightly more general, combining these two matrices for
an upper- and a lower triangular part we talk about a semi-seperable matrix if we can represent it in the
form

TSS = tril(p · qT ) + triu(v · wT , 1) =


p1q1 v1w2 v1w3 . . . v1wn

p2q1 p2q2 v2w3 . . . v2wn

p3q1 p3q2 p3q3 . . . v3wn

...
...

...
. . .

...
pmq1 pmq2 pmq3 . . . pmqn


There exist various different forms of definitions for semi-separable matrices [4]. For example. this form of
semi-separability is often slightly modified to just apply to strictly upper and/or strictly lower triangular
matrices, such that the diagonal is kept as a separate additive item , i.e. TSS = tril(p · qT ,−1) + triu(v ·
wT , 1) + diag(Tss).

One particular form of semi-separability comes in the shape of sequentially semi-separability, to be covered
next.
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3.2 Matrix-Vector Multiplication wit Semi-separable Matrices

We now have a look at a matrix-vector multiplication, where the coefficient matrix is a lower triangular
semi-separable matrix is. More specifically, we look at

y = TSS · u =



p1q1 0 . . . . . . 0
p2q1 p2q2 0 . . . 0

p3q1 p3q2 p3q3
. . .

...
...

...
...

. . . 0
pnq1 pnq2 pnq3 . . . pnqn,

 ·


u1

u2

u3

...
un

 =


y1

y2

y3

...
yn

 . (4)

Expanding the rows leads to the following equations

y1 = p1q1u1

y2 = p2q1u1 + p2q2u2 = p2(q1u1 + q2u2)

y3 = p3q1u1 + p3q2u2 + p3q3u3 = p3 (q1u1 + q2u2 + q3u3)︸ ︷︷ ︸
∆3

y4 = p4q1u1 + p4q2u2 + p4q3u3 + p4q4u4 = p4 (∆3 + q4u4)︸ ︷︷ ︸
∆4

...
...

yn = pn(q1u1 + q2u2 + · · ·+ qnun) = pn(∆n−1 + qnun)

Looking at this set of equations we can rewrite the formula for each component as

yi = pi

i∑
k=1

qkuk.

Computing each of the n component in y requires 3 operations (2 Multiplications, 1 Addition), except
for the first component, which requires only 2 multiplications. This leads to a computational complexity
3n − 1 operations for performing this matrix-vector multiplication. This is a significant reduction in
computations as compared to a matrix-vector multiplication using a generic lower triangular matrix.

3.3 Inverse of Bi-Diagonal and Tri-Diagonal Matrices

3.3.1 Bi-diagonal Matrices

We can observe that the inverse of a lower bi-diagonal matrix B is lower, but no longer bi-diagonal.
Check for example the inversion of a bi-diagonal matrix B given as

B =


1
b1 1
0 b2 1
...

. . .
. . .

. . .

0 . . . 0 bn−1 1

 → B−1 =



1
−b1 1
b1b2 −b2 1
−b1b2b3 −b2b3 −b3 1

...
...

...
. . .

±b1 . . . bn−1 ±b2 . . . bn−1 ±b3 . . . bn−1 . . . . . . 1


.

(5)
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This bi-diagonal matrix B only exhibits n − 1 free parameters, which also applies to B−1. Looking at
Equation 5 we can also immediately see that B−1 is a lower triangular semi-separable matrix.

3.3.2 Tri-diagonal Matrices

As a next we consider a tri-diagonal matrix T . It is easy to check that except for special cases the inverse
of a tri-diagonal matrix is no longer tri-diagonal, but it is semi-separable. In such cases we have

T =



t11 t12 0 . . . 0

t21 t22 t23
. . .

...

0
. . .

. . .
. . . 0

...
. . . tn−1n

0 . . . 0 tnn−1 tnn


→ T−1 =


? ? ? . . . ?
? ? ? . . . ?
? ? ? . . . ?
...

...
...

. . .
...

? ? ? . . . ?

 ← semi-separable

The tri-diagonal matrix T has 3n− 2 free parameters. The number of parameters does not change upon
inversion. Therefore, even if T−1 does not show it directly, it also has only 3n− 2 free parameters.

hier kommt noch etwas um klarer zu zeigen, dass T−1 semi-separable ist.

3.4 QR Decomposition of Semi-separable Matrices

Now, we shall have a quick look on basic observations concerning the QR decomposition of semi-separable
matrices. Computing the QR decomposition of T amounts to determining the orthogonal factor Q
(QTQ = 1) and the upper triangular factor R as

T = Q ·R.

For that purpose, let’s take a look at a 5 × 5 example of the lower semi-separable matrix as introduced
in Equation 2 as an illustrative example. We start the QR decomposition with a Givens rotation appied
to rows 4 and 5 with the goal to eliminate the 51 entry of T , i.e. we aim at

1
2
3
4
5


p1q1

p2q1 p2q2

p3q1 p3q2 p3q3

p4q1 p4q2 p4q3 p4q4

p5q1 p5q2 p5q3 p5q4 p5q5

 GT
45

→

1
2
3
4
5


p1q1

p2q1 p2q2

p3q1 p3q2 p3q3

? ? ? ? ?
0 0 0 0 ?

 ,

where G45 denotes a Givens rotation acting on rows 4 and 5 and ? denoting any arbitrary number (e.g.
42). Extracting the rows #4 and #5 from the matrix we can see that the row vectors made up by the
first 4 entries in rows #4 and #5 are linear dependent, i.e. we have

4
5

[
p4q1 p4q2 p4q3 p4q4 0
p5q1 p5q2 p5q3 p5q4 p5q5

]
=

[
p4 0
0 p5

]
·
[

q1 q2 q3 q4 0
q1 q2 q3 q4 q5

]
.

Therefore, eliminating the 51 entry will produce additional zeros in row 5 basically for free, i.e. we see

1√
2

[
1 1
1 −1

]
·
[

q1 q2 q3 q4 0
q1 q2 q3 q4 q5

]
=

[
q1 q2 q3 q4

q5
2

0 0 0 0 − q5
2

]
happening.

If T is a semi-separable matrix, then the lower triangular part of the matrix Q produced by a QR
decomposition of T also has semi-separable structure.
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Figure 1: Subdivision of lower triangular (causal) matrix T , left - regular subdivision, right - irregular
subdivision

4 Quasi-separable Matrix

4.1 Opening Comments

A further type of structured matrices, which also belongs to the family of semi-separable matrices is the
class of sequentially semi-separable matrices, which is also called quasi-separable matrices and which we
will discuss in the following sections, and which is the most prominent type of matrix structure we will
handle in this course.

4.2 Simple Task

We use the simple task of matrix-vector multiplication

y = T · u, T ∈ Rn×n, u, y ∈ Rn, (6)

but we equally well consider matrix-matrix multiplication, all conceivable matrix factorization tasks as
well as matrix inversion. All these matrix operations can benefit from any semi-separable structure a
matrix T may exhibit. We also consider all shapes of matrices and we do not restrict our discussion to
quadratic or even just invertible matrices.

4.3 Lower Triangular Matrix

As a first step I just consider lower triangular matrices and then move on to full matrices. The lower
triangular matrix can exhibit a regular or an irregular block structure as shown in Figure 1.

Looking only at a small example of a 5× 5 lower triangular matrix a sequentially semi-separable matrix
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is defined as being representable as

TSSS =


D1 0 0 0 0

C2B1 D2 0 0 0
C3A2B1 C3B2 D3 0 0

C4A3A2B1 C4A3B2 C4B3 D4 0
C5A4A3A2B1 C5A4A3B2 C5A4B3 C5B4 D5

 , (7)

where all the matrices Ak, Bk, Ck and Dk for k = 1, . . . 5 may take on a wide range of dimensions
(including 0-dimensional matrices) as long as the products of these matrices appearing in Equation 7 are
well defined. This representation is the core piece for sequentially semi-separable structures. For now
we assume that we know the individual matrices Ak, Bk, Ck and Dk for k = 1, . . . 5 showing up in this
parameterization.

If all the matrices Ak in Equation 7 are the identity, i.e. we have

TSSS =


D1 0 0 0 0

C2B1 D2 0 0 0
C3B1 C3B2 D3 0 0
C4B1 C4B2 C4B3 D4 0
C5B1 C5B2 C5B3 C5B4 D5

 = tril




C1

C2

C3

C4

C5

 [ B1 B2 B3 B4 B5

]
 . (8)

We can see that the matrix resulting from this simplification happens to be a lower triangular semi-
separable matrix. That indicates that the sequentially semi-separable matrices contain the semi-separable
matrices as a special case.

4.4 Full Matrix

The notion of sequentially semi-separable matrix structure also applies to full matrices. A full matrix is
considered to consist of a lower triangular part and a strictly upper triangular part. The concept that
we have seen for the lower-triangular matrix can be extended to the strictly upper triangular part as

TSSS =


D1 G1F2 G1E2F3 G1E2E3F4 G1E2E3E4F5

C2B1 D2 G2F3 G2E3F4 G2E3E4F5

C3A2B1 C3B2 D3 G3F4 G3E4F5

C4A3A2B1 C4A3B2 C4B3 D4 G4F5
C5A4A3A2B1 C5A4A3B2 C5A4B3 C5B4 D5

 . (9)

We can see that the lower triangular part of this matrix TSSS is identical to the lower triangular matrix
introduced in the previous section. For the strictly upper triangular part we have introduced new param-
eters Ek, Fk, Hk, which are composed in a similar way than the Ak, Bk, Ck for their r the strictly lower
triangular part. The diagonal block Dk are on their own so that we can separate the matrix into three
separate components as

TSSS = L(Ak, Bk, Ck) +D(Dk) + U(Ek, Fk, Hk), k = 1, 2, . . . N

where L,D,U denote the lower, diagonal and upper part, respectively. Looking at Figure 2 we can see
that the diagonal blocks Dk (see the blue coloured boxes) are not restricted to be quadratic.
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Figure 2: Sub-blocks of the matrix T can have regular shape (left figure) or irregular shape (right figure).
The sequentially semi-separable character is visible by the lower part L (red/orange rectangles), the
diagonal part D(blue rectangles) and the upper part U) (green/yellow rectangles).

4.5 Matrix-Vector Multiplication

We have a closer look at the matrix-vector multiplication using the lower-triangular sequentially semi-
separable (SSS) matrix given as

y = TSSS · u.

Plugging in the little 5× 5 lower triangular example matrix
y1

y2

y3

y4

y5

 =


D1 0 0 0 0

C2B1 D2 0 0 0
C3A2B1 C3B2 D3 0 0

C4A3A2B1 C4A3B2 C4B3 D4 0
C5A4A3A2B1 C5A4A3B2 C5A4B3 C5B4 D5

 ·


u1

u2

u3

u4

u5


we can expand the product fully as

y1

y2

y3

y4

y5

 =


D1u1

C2(B1u1) + D2u2

C3A2(B1u1) + C3(B2u2) + D3u3

C4A3A2(B1u1) + C4A3(B2u2) + C4(B3u3) + D4u4

C5A4A3A2(B1u1) + C5A4A3(B2u2) + C5A4(B3u3) + C5(B4u4) + D5u5

 .

Looking at this example we can deduce a more general scheme for computing the vector entry yk as

yk = CkAk−1 . . . A2Bku1 + CkAk−1 . . . A3B2u2 + · · ·+ CkBk−1uk−1 + Dkuk.

Staring at this formula long enough reveals that we can speed up these calculations by introducing
intermediate quantities

x1 = B1u1, and xk = Bkuk + Akxk−1, k = 2, . . . n. (10)
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We can successively insert these intermediate quantities, i.e. next we get
y1

y2

y3

y4

y5

 =


D1u1

C2x1 + D2u2

C3(A2x1 + B2u2) + D3u3

C4A3(A2x1 + B2u2) + C4(B3u3) + D4u4

C5A4A3(A2x1 + B2u2) + C5A4(B3u3) + C5(B4u4) + D5u5

 .

yet another step of inserting intermediate quantities produces
y1

y2

y3

y4

y5

 =


D1u1

C2x1 + D2u2

C3x2 + D3u3

C4(A3x2 + B3u3) + D4u4

C5A4(A3x2 + B3u3) + C5(B4u4) + D5u5

 ,

almost done with plugging in
y1

y2

y3

y4

y5

 =


D1u1

C2x1 + D2u2

C3x2 + D3u3

C4x3 + D4u4

C5(A4x3 + B4u4) + D5u5

 ,

and finally we arrive at
y1

y2

y3

y4

y5

 =


D1u1

C2x1 + D2u2

C3x2 + D3u3

C4x3 + D4u4

C5x4 + D5u5

 .

At the end of this process we observe that we get the result of our matrix-vector multiplication as

y1 = D1u1, yk = Ckxk−1 + Dkuk, 1 < k < n, and yn = Cnxn−1 + Dnun (11)

Making systematic use of intermediate results we can build up an efficient computational scheme that
uses less arithmetic operations than a plain straight-forward matrix-vector multiplication. It is also
obvious that the efficiency may dependent on the actual size of the involved matrices Ak, Bk, Ck, Dk. That
represents the core observation that makes the sequentially semi-separable matrix structure attractive for
the design of efficient algorithms. In [3], the authors show that this process provides an efficient algorithm
for matrix-vector multiplication ...

From an engineering point of view the ensemble of Equations 10 and 11 look very familiar and can be
recognized as a discrete-time state-space representation for a causal, linear, time-varying system (see
further [2]). We defer a more detailed discussion of this important observation to a later chapter.

4.6 Computational Model

4.6.1 Direct Realization

In this section we present a simple example for a lower triangular matrix for which we devise a computa-
tional model in terms of a graphical representation to depict the computations involved in a matrix-vector
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multiplication, which is also known as a signal flow graph well established in signal processing. For that
purpose look at a matrix T given as

T =


1

−1/2 1
1/6 −1/3 1

−1/24 1/12 −1/4 1
1/120 −1/60 1/30 −1/5 1

 =


D1 0 0 0 0

C2B1 D2 0 0 0
C3A2B1 C3B2 D3 0 0

C4A3A2B1 C4A3B2 C4B3 D4 0
C5A4A3A2B1 C5A4A3B2 C5A4B3 C5B4 D5

 ,

where we already gave the representation of T in terms of the parameters Ak, Bk, Ck, Dk pertaining to
the semi-separable structure.

This is actually used to determine the matrix-vector multiplication as introduced in the previous section.
If we follow the lines in the signal flow graph, then we can verify in a straight forward way by inspection
that this is actually the case.


y1

y2

y3

y4

y5

 =


1

−1/2 1
1/6 −1/3 1

−1/24 1/12 −1/4 1
1/120 −1/60 1/30 −1/5 1

·


u1

u2

u3

u4

u5

 =


u1

u2 − 1/2u1

u3 − 1/3u2 + 1/6u1

u41/4ue + 1/12u2 − 1/24u1

u5 − 1/5u4 + 1/30u3 − 1/60u2 + 1/120u1


Looking at the computational structure in Figure 3 we can quickly determine the computational load.
We count the non-trivial multiplications (red boxes) as well as the number of latches (denoted by gray
boxes with the letter Z), which is gives us the amount of additional memory needed to perform the
computation. We can see, that our example requires 10 multiplications and 10 latches. Additionally, we
need to store the matrix entries of T , for which we need memory for 10 values.

4.6.2 Elementary Computing Block

If we were to use this matrix to perform the simple matrix-vector multiplication T ·u = y we can represent
the computational task graphically as a signal flow graph as it is shown in Figure 3. in Figure 4 an
elementary computational building block is shown, along with the associated elementary computations.

We can summarize the computations associated with an elementary computing block by means of a
simple matrix

Σk =

[
Ak Bk

Ck Dk

]
.

The parameters AkBk, Ck, dk also appear in the elementary signal flow graph shown in Figure 4. For the
signal flow graph of our 5× 5 example shown in Figure 3 we can read off the corresponding parameters
for the elementary building blocks to be

Σ1 =

[
[·] [1]
[·] [1]

]
, Σ2 =


[

1
0

] [
0
1

]

[−1/2] [1]

 , Σ3 =



 1 0
0 1
0 0

  0
0
1


[

1/6 −1/3
]

[1]


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Figure 3: Computational model for representing the 5 × 5 lower triangular matrix T and the data flow
for the computation of T · u = y.
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Figure 4: Elementary computational building block

Σ4 =




1 0 0
0 1 0
0 0 1
0 0 0




0
0
0
1


[
−1/24 1/12 1/4

]
[1]


, Σ5 =


[·] [·]

[
1/120 −1/60 1/30 −1/5

]
[1]

 ,

where the symbol [·] denotes a matrix with dimension 0.

4.6.3 Alternative Realization

We now have a look at the computational model as shown in Figure 5. While this model looks distinctively
different than the one shown in Figure 3 we can check by visual inspection that this structure performs
exactly the same matrix-vector multiplication. If we use this model, we can again assess the amount of
computational resources needed. We end up with only 7 non-trivial multiplications and only 4 latches.
By finding the second structure, we have reduced the number of multiplications by 30% and the amount
of memory by 60%. Also, while we needed to store all 10 values of the matrix entries we now only have
to store 7, which is another reduction in the memory footprint for storing the matrix T .

We can summarize the computations associated with an elementary computing block by means of a
simple matrix

Σk =

[
Ak Bk

Ck Dk

]
.

For the signal flow graph of our 5 × 5 example shown in Figure 5 we can read off the corresponding
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Figure 5: Equivalent Computational model for representing the 5× 5 lower triangular matrix T and the
data flow for the computation of T · u = y.

parameters for the elementary building blocks to be

Σ1 =

[
[·] [−1/2]
[·] [1]

]
, Σ2 =

[
[−1/3] [−1/3]

[1] [1]

]
, Σ3 =

[
[−1/4] [−1/4]

[1] [1]

]

Σ4 =

[
[−1/5] [−1/5]

[1] [1]

]
Σ5 =

[
[·] [·]
[1] [1]

]
,

where the symbol [·] denotes a matrix with dimension 0.

4.7 Questions

While the amount of savings in terms of multiplications and memory for our little example appears to be
only moderate, one needs to consider that the size of the matrices in many real-world applications and
in deep machine learning is considerably larger.

We can check the structural properties of sequentially semi-separable matrices and convince ourselves of
the efficiency of computation. For a more systematic approach to exploitation of this type of structure
we have to address and answer a few questions:

1. Just how efficient can we get with matrix-vector multiplication if we were to fully exploit the
sequentially semi-separable structure ?

2. Can we characterize the set of matrices that allow for efficient computations? Can all matrices be
represented as SSS?
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3. How do we determine the parameters Ak, Bk, Ck, Dk that make up the sequentially semi-separable
matrix?

4. Can we systematically find alternative computational models, which offer the benefits of reducing
computational complexity. Can we resolve this apparent ambiguity?

5. What is a theoretical framework that allows us the systematic study of SSS matrices?

6. How does the computational demands for computing with SSS matrices scale with the size of the
matrices - what is the asymptotic computational complexity?
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