
Time-Variant and Quasi-separable Systems∗

supplementary reading

.

- Matrix Decompositions -

Klaus Diepold, Patrick Dewilde

Spring 2025

1 Introduction

In this chapter we will cover two matrix factorization, which are of central importance for our topic. We
will discuss the QR Decomposition (QRD) and the Singular Value Decomposition (SVD). Of course, there
exists a large number of various factorizations such as LU-factorization, Polar Decomposition, Cholesky-
Factorization, Eigenvalue Decomposition, to name the most prominent examples. However, we will not
dive into the general topic of matrix factorizations.

2 QR Decomposition

2.1 Basic Factorization Properties

QR decomposition and its several variants (QL, RQ, LQ) is one of the most effective, most common and
most useful techniques of matrix calculus. It has many purposes, which will become clear in this and the
remaining chapters. Given a matrix T , it consists in finding a factorization T = Q · R̃, in which Q is
unitary (hence square with Q′Q = QQ′ = 1), the entries of R are concentrated in the upper right corner,
and so that

T =
[
Q1 Q2

]
︸ ︷︷ ︸

Q

·
[
R
0

]

︸ ︷︷ ︸
R̃

= Q1 ·R,

with the result that the columns of Q1 span an orthonormal basis for the range of T , Q2 provides for
an orthonormal basis of the co-kernel of T (i.e., the kernel of TT) and the rows of R provide a basis for
the co-range of T . In other words, the factorization characterizes T ’s global ‘geometry’. We have already

∗P. Dewilde, K. Diepold, A.-J. v.d. Veen. Time-Variant ans Quasi-separable Systems, Cambridge University Press, 2024

1

Matrix Decompositions 2

seen the importance of such factorizations in realization theory, in this and the next lecture we explore
the numerical methods to compute it efficiently, starting with T just a matrix, and then later moving to
allow T to have a state space realization.

2.2 Using QR Decomposition to Find Least Squares Solutions

Besides the determination of ranges and kernels mentioned above, QR can be used effectively to produce
minimal least squares solutions for overdetermined systems of equations.

Let us assume that we are given an m × n matrix T and an m-vector y. We intend to determine an
n-vector u such that

Tu = y.

Distinguish the following cases




m > n overdetermined
n = m square
m < n underdetermined.

For ease of discussion we shall look only at the case m ≥ n, that is, we want to compute the least squares
solution for the overdetermined system of equations, and let us assume, in addition, that the n columns
of T are linearly independent. In that case, R will be a square, non-singular matrix, and the system of
equations becomes

[
Q1 Q2

]
·
[
R
0

]
u = b

Premultiplying with Q′ and putting

[
β1

β2

]
:=

[
QT1
QT2

]
b reduces the system to the equivalent system

[
Ru
0

]
=

[
β1

β2

]
,

which will only have an exact solution iff β2 = 0 (i.e. if b belongs to the range of T), in which case
u = R−1β1. More generally, for any u, the error e made by using u as a solution will be

[
e1

e2

]
=

[
β1 −Ru
β2

]

which has norm squared ‖e‖2 = ‖β1−Ru‖2 +‖β2‖2, which will evidently be minimal when Ru = β1, and
will then be equal to the minimal possible quadratic error β2. Hence u = R−1QT1 b solves the quadratic
minimization problem for the present case of overdetermined data.

3 QR Decomposition using Householder Reflections

3.1 Householder Reflections

We consider the Householder matrix H, which is defined as

H = 1− 2Pu, Pu = u(u′u)−1u′,

Matrix Decompositions 3

i.e. the matrix Pu is a projection matrix (P 2
u = Pu, P

′
u = Pu), which projects any vector x onto the

direction of the vector u = x − y. The direction spanned by the vector u is sometimes denoted by
path (H), whereas the direction spanned by the vector v = x+ y is denoted by fix (H) because we can
see that Hv = v.

The Householder matrix H satisfies the orthogonality property H ′H = 1 and has the property that
detH = −1, which indicates that H is a reflection which reverses orientation, i.e. we have Hu = −u.

We search for an orthogonal transformation H which transforms a given vector x onto a given vector
y = Hx, where ‖x‖ = ‖y‖ holds. We compute the vector u specifying the projection direction for Pu as
u = y − x. The construction idea behind the Householder transformation as a reflection is depicted as
geometric construction in Figure 1.

x

y

v = x + y

u = x − y

Pux

−Pux

−Pux

y = (1 − 2 · Pu)� �� �
H

x Pu = u(uT u)−1uT

Householder	
 Reflec.on	

Figure 1: Geometric visualization for the construction of a Householder reflection.

Note that detH = −1 holds as the transformation H is a reflection, which flips orientation.

3.2 Generalized Rotations

Although Householder reflections are very handy for computing the QR decomposition (that’s what
Matlab does), it is often useful to dispose of a one-shot generalized rotation that rotates a column vector

u =

[
u1

u2

]
, u1 ∈ R, u2 ∈ Rn

of dimension n+ 1, with

‖u‖2 = |u1|2 +

n∑

i=1

|u2,i|2 = 1

and with non-negative real first element u1 to the positive first axis, which we call e1 generically (ignoring
its dimension)—e1 is then a vector of dimension n+ 1 here.

Matrix Decompositions 4

The following unitary matrix pulls the trick (notice that u1 may very well be equal to zero)

Qu :=

[
u1 u′2
−u2 1− u2

1
1+u1

u′2

]
, Qu ∈ SO(n+ 1) (1)

and we shall have Quu = e1, which is easily verified directly. The matrix Qu is an orthogonal matrix with
detQu = 1, it is a generalized rotation matrix. One can show that it can be produced by a sequence of
elementary Givens rotations, but a direct application of such a matrix on an arbitrary vector

x =

[
x1

x2

]
,

with x1 scalar, produces the following ‘efficient’ computation

Qux =

[
u1x1 + u′2x2

x2 − u2(x1 +
u′
2x2

1+u1
)

]
, (2)

in which the inner product u′2x2 should be executed only once.

The generalized rotation provides the same basic functionality than the Householder reflection, i.e. it
rotates a given vector in the direction of the first unit direction e1. If we need a general orthogonal
mapping between two vectors x and y with Qxy · x = y. where both vectors have the same Euclidean
length ‖x‖ = ‖y‖, then we need to compose two rotations Qx and Qy with

Qx · x = e1, Qy · y = e1, ⇒ Q′y ·Qx︸ ︷︷ ︸
Qxy

·x = y

The main feature of the generalized rotations is that we have detQ = +1, whereas we have detH = −1
for Householder reflections.

3.3 Elimination Scheme Based on Householder Reflections

A cascade of unitary transformations is still a unitary transformation. Let Hi be a transformation on the
rows i until and n which annihilates all appropriate elements in rows i+ 1 : n (as indicated further in the
example)

x =




x1

x2

...
xn


 , y =




√
x′x
0
...
0


 .

Successive eliminations on a 6× 4 matrix (in which the · indicates a relevant element of the matrix)




· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·




(H16) 7→




? ? ? ?
0 · · ·
0 · · ·
0 · · ·
0 · · ·
0 · · ·




(H26) 7→




? ? ? ?
0 ? ? ?
0 0 · ·
0 0 · ·
0 0 · ·
0 0 · ·




(H36) 7→




? ? ? ?
0 ? ? ?
0 0 ? ?
0 0 0 ·
0 0 0 ·
0 0 0 ·



7→




? ? ? ?
0 ? ? ?
0 0 ? ?
0 0 0 ·
0 0 0 ·
0 0 0 ·




Matrix Decompositions 5

(H46) 7→




? ? ? ?
0 ? ? ?
0 0 ? ?
0 0 0 ?
0 0 0 0
0 0 0 0



7→




? ? ? ?
0 ? ? ?
0 0 ? ?
0 0 0 ?
0 0 0 0
0 0 0 0




=

[
R
0

]

The elements that have changed during the last transformation are denoted by a ’?’. There are no fill-ins,
a purposeful zero does not get modified later on. The end result is

H46H36H26H16︸ ︷︷ ︸
QT

T =

[
R
0

]

in which R is upper triangular.

The elimination scheme looks exactly the same if we were to use Generalized rotations instead of House-
holder reflections. The only difference is that the final orthogonal transformation Q will have detQ = +1,
when rotations are used.

4 QR Decomposition Using Givens Rotations

4.1 The Givens Elementary Elimination Strategy

The general strategy for solution is an orthogonal transformations on rows. Let a and b be two rows in a
matrix, then we can generate linear combinations of these rows by applying a transformation matrix to
the left according to

[
t11 t12

t21 t22

] [
− a −
− b −

]
=

[
t11a+ t12b
t21a+ t22b

]
.

We can represent this transformation equivalently by embedding the 2× 2 transformation matrix into a
m×m-matrix according to




1
1

t11 − t12

| 1 |
t21 − t22

1







− · −
− · −
− a −
− · −
− b −
− · −




=




− · −
− · −
t11a+ t12b
− · −
t21a+ t22b
− · −



.

It is the goal of such a row transformation to eliminate one pre-specified entry in the transformed rows.
One thought goes into choosing the type for the elementary transformation and then we need to determine
the parameter values of such a transformation to achieve the transformation goal.

4.2 Givens (Jacobi) Rotation

One particular choice for the elementary transformation is the Givens transformation, which is also often
referred to by the name Jacobi transformation. The Givens elementary transformation is given as a special

Matrix Decompositions 6

form for the elementary 2× 2-matrix
[
t11 t12

t21 t22

]
=

[
cosφ − sinφ
sinφ cosφ

]

︸ ︷︷ ︸
R(φ)

.

The Givens transformation R(φ) represents an elementary rotation over an angle φ. We can choose the
value for this parameter φ such that the resulting Jacobi transformation R annihilates a predetermined
element in a row (with c

.
= cosφ and s

.
= sinφ), that is we get

[
c −s
s c

] [
a1 a2 · · · am
b1 b2 · · · bm

]
=

[
ca1 − sb1 ca2 − sb2 · · ·
sa1 + cb1 sa2 + cb2 · · ·

]

.
=

[√
|a1|2 + |b1|2 ? · · · ?

0 ? · · · ?

]

when sa1 + cb1 = 0 or

tanφ = − b1
a1

which can always be done.

Note that the Jacobi transformation has the interpretation of a rotation in one plane, which corresponds
with the observation that detR = 1.

4.3 Elimination Scheme Based on Givens Transformations

A cascade of unitary transformations is still a unitary transformation: let Qij be a transformation on
rows i and j which annihilates an appropriate element (as indicated further in the example). Successive
eliminations on a 4× 3 matrix (in which the · indicates a relevant element of the matrix):




· · ·
· · ·
· · ·
· · ·


 (Q14) 7→




? ? ?
· · ·
· · ·
0 ? ?


 (Q13) 7→




? ? ?
· · ·
0 ? ?
0 ? ?


 (Q12) 7→

7→




? ? ?
0 ? ?
0 ? ?
0 ? ?


 (Q24) 7→




? ? ?
0 ? ?
0 ? ?
0 0 ?


 (Q23) 7→




? ? ?
0 ? ?
0 0 ?
0 0 ?


 7→ (Q34) 7→




? ? ?
0 ? ?
0 0 ?
0 0 0


 =

[
R
0

]

(The elements that have changed during the last transformation are denoted by a ’?’. There are no fill-ins,
a purposeful zero does not get modified lateron.) The end result is:

Q34Q23Q24Q12Q13Q14︸ ︷︷ ︸
QT

T =

[
R
0

]

in which R is upper triangular.

There exist a certain degree of freedom concerning the sequencing of elimination steps. The previous sche-
matic example displayed a column-wise elimination strategy. Equivalently, a other elimination strategies
are possible.

Matrix Decompositions 7

4.4 Parallel Processing for Elimination Scheme

Successive elimination of matrix entries in the lower triangular part of a matrix. Some elimination steps
are independent from other steps and allow for a scheduling of the elimination for parallel processing.
See how the 0 can be created in the schematic example below




· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·



7→




· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
0 · · ·



7→




· · · ·
· · · ·
· · · ·
· · · ·
0 · · ·
0 · · ·



7→




· · · ·
· · · ·
· · · ·
0 · · ·
0 · · ·
0 0 · ·



7→




· · · ·
· · · ·
0 · · ·
0 · · ·
0 0 · ·
0 0 · ·







· · · ·
0 · · ·
0 · · ·
0 0 · ·
0 0 · ·
0 0 0 ·



7→




· · · ·
0 · · ·
0 0 · ·
0 0 · ·
0 0 0 ·
0 0 0 ·



7→




· · · ·
0 · · ·
0 0 · ·
0 0 0 ·
0 0 0 ·
0 0 0 0



7→




· · · ·
0 · · ·
0 0 · ·
0 0 0 ·
0 0 0 0
0 0 0 0




Analyzing this elimination pattern gives us an opportunity to sequence the elimination steps systemati-
cally according to the following pattern to exploit a maximum of data parallelism




· · · ·
5 · · ·
4 6 · ·
3 5 7 ·
2 4 6 8
1 3 5 7



.

4.5 Uniqueness of QR Decomposition

In spite of all the various approaches to compute a QR decomposition, i.e. using Householder reflections
or different sequences of Givens rotations, the result turns out the same. Under regular conditions of
having a matrix A with full column rank we can show that the factorization is unique within a signature
matrix. To this end we look at a factorization for such a matrix in terms of

A = Q ·R.

We want to check if there exist alternative matrices Q̂ and R̂ to achieve this decomposition for A. To this
end, we squeeze the identity between the original factors Q and R. Then we re-group the factors to have
an expression for these alternative factors. This way we have

A = Q ·M ·M−1R = (Q ·M)︸ ︷︷ ︸
Q̂

· (M−1 ·R)︸ ︷︷ ︸
R̂

.

In order for the factor Q̂ = Q · M to be again an orthogonal matrix, the matrix M needs to be an
orthogonal matrix. In order for the factor R̂ = M−1 ·R to be upper triangular, the matrix M needs to be
upper triangular. So, the matrix M is required to e orthogonal and upper triangular at the same time.

Matrix Decompositions 8

The upper triangular matrix M needs to satisfy M ′M = 1, which implies that the columns are scaled to
unit length and are mutually orthogonal. We can look at

M =




m11 m12 . . . m1n

m22 . . . m2n

. . .
...

mnn


 −→

m11 = ±1
m11m12 = 0 −→ m12 = 0
m22 = ±1
...
mnn = ±1

and conclude that M can only be

M =




±1
±1

. . .

±1


 .

This means in essence that all the algorithmic variations to compute the QR decomposition arrive at
the same result. This is a reassuring result, even if it keeps me surprised observing the very different
elimination strategies.

5 Echelon Form

Suppose now that one disposes of a collection of vectors A =
[
a1 · · · am

]
of dimension 1 + n (say

columns of a matrix), and suppose that we are entitled to apply rotations to them (i.e., generalized
rotation matrix of dimension n+ 1 to the left of A). Suppose ak is the non-zero vector with the smallest
k and that its first element is ak,1 = |ak,1|ejφ1 (the latter may very well be equal to zero). Applying Qak
to the stack now produces the following typical form:

QakA = Qak
[
a1 · · · ak−1 ak ak+1 · · · am

]
(3)

=
[

0 · · · 0 e1‖ak‖ejφ1 Qakak+1 · · · Qakam
]

(4)

=

[
0 · · · 0 ‖ak‖ejφ1 ∗ · · · ∗
0 · · · 0 0 bk+1 · · · bm

]
(5)

where the “∗” indicate entries that have been modified (and will remain unchanged later one), and the[
bk+1 · · · bm

]
is a new collection of vectors, now of dimension n, and on which the procedure can

be repeated without producing new fill-ins in the zero elements obtained so far, now with one dimension
less (some of the zeros shown above may disappear, e.g., when a1 is already non-zero.). Continuing this
way, now on the b’s and realizing that products of rotation matrices remain orthogonal or unitary, after
a number of steps one obtains a so called echelon form

A =
[
Q1 Q2

] [R1

0

]
(6)

in which

R1 =




0 · · · 0 R1,k1 · · · ∗ ∗ · · · ∗ ∗ · · ·
0 · · · 0 0 · · · 0 R2,k2 · · · ∗ ∗ · · ·

...
0 · · · 0 0 · · · 0 0 · · · 0 Rδ,kδ · · ·


 , (7)

Matrix Decompositions 9

δ is the rank of A, Q is orthogonal or unitary. One sees easily that the columns of Q1 form a basis for
the range of A, while the columns of RT1 form a basis for the co-range (i.e., the range of AT), and the
columns of Q2 for the co-kernel.

A similar, even more powerful result could have been obtained by SVD (Singular Value Decomposition)
of A as

A =
[
U1 U2

] [Σ 0
0 0

] [
V T1
V T2

]
=
[
U1 U2

] [ΣV T1
0

]
(8)

at the cost of more computations. Here

Σ =



σ1

. . .

σδ




are the singular values of A in order: σ1 ≥ σ2 ≥ · · · ≥ σδ > 0, the columns of U1 form a basis for the
range of A while the columns of V1 and V1Σ for the co-range.

The example in the next section (and many in subsequent chapters) actually uses a variant of the QR-
algorithm just presented, namely an algorithm that starts at the bottom right corner and produces an
RQ factorization, with R again an echelon matrix and Q an orthogonal or unitary matrix. The procedure
now starts out with a collection of rows rather than columns, it is dual to the preceding

A =
[

0 R2

]
·
[
Q1

Q2

]
(9)

R2 is obtained by compressing towards the last column starting with the bottom row (skipping it when
zero), it will look like




...
...

...
Rδ,kδ ∗ ∗

0 ∗ ∗
...

...
...

0 R2,k2 ∗
0 0 ∗
... · · ·

...
...

0 0 R1,k1

0 0 0
...

...
...

0 0 0




(10)

these columns now forming a base for the range of A. Also in this case, a more accurate result can be
obtained through SVD, when needed.

6 The Family of QR Decompositions

6.1 Alternative Schemes

Besides the standard set up for the QR decomposition we can easily conceive alternative schemes by
changing between left and right multiplication of T with the orthogonal factor Q and by choosing between

Matrix Decompositions 10

L and R according to

• T = QR

−→




q q q q
q q q q
q q q q
q q q q


 ·




r r r r
r r r

r r
r




compress columns upwards (bottom to top) going from from right to left, using orthogonal multi-
plications from the left side (pre-multitplication), start elimination with first column progressing
from left to right.

• T = QL

−→




q q q q
q q q q
q q q q
q q q q


 ·




l
l l
l l l
l l l l




compress columns downwards (top to bottom) going from left to right using orthogonal pre-
multiplication, using orthgonal multiplications from the left side (pre-multiplication), start elimi-
nation with the last column and progress from right to left.

• T = RQ

−→




r r r r
r r r

r r
r


 ·




q q q q
q q q q
q q q q
q q q q




compress rows towards the right, using orthogonal transformation from the right side (post-multiplication);
start elimination with last row and progress upward.

• T = LQ

−→ ·




l
l l
l l l
l l l l


 ·




q q q q
q q q q
q q q q
q q q q




compress rows downwards starting from the top, where R denotes an upper echelon type matrix and L a
corresponding lower echelon type matrix. All this variations of the QR decomposition can be determined
by appropriately modified sequences of Givens rotations or general rotations applied from the left or from
the right. Also, note that the matrices R,L and Q used in this section may all be different in spite of
using the same symbols and in spite of starting the same T . When the matrix T is square non-singular,
then the R are upper triangular and the L lower triangular and both are invertible.

6.2 Elimination Scheme for QL factorization

We briefly sketch the elimination scheme for computing a QL factorization of a given matrix. The compu-
tational tool, i.e. Householder reflections is exactly the same as used for computing the QR factorization

Matrix Decompositions 11

we discussed earlier. The difference lies in the sequence of elimination steps and the choice of vectors for
constructing the reflection.

x =




x1

x2

...
xn


 , y =




0
0
...

±
√
x′x


 .

The change of the elimination strategy amounts to start on the far right side moving towards the left side
and then creating zeros on the top. Successive eliminations on a 6× 4 matrix (in which the · indicates a
relevant element of the matrix)




· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·




(H16) 7→




· · · 0
· · · 0
· · · 0
· · · 0
· · · 0
? ? ? ?




(H26) 7→




· · 0 0
· · 0 0
· · 0 0
· · 0 0
? ? ? 0
? ? ? ?




(H36) 7→




· 0 0 0
· 0 0 0
· 0 0 0
? ? 0 0
? ? ? 0
? ? ? ?




(H46) 7→




0 0 0 0
0 0 0 0
? 0 0 0
? ? 0 0
? ? ? 0
? ? ? ?



7→




0 0 0 0
0 0 0 0
? 0 0 0
? ? 0 0
? ? ? 0
? ? ? ?




=

[
0
L

]

The elements that have changed during the last transformation are denoted by a ’?’. There are no fill-ins,
a purposeful zero does not get modified later on. The end result is

H46H36H26H16︸ ︷︷ ︸
QT

T =

[
0
L

]

in which L is lower triangular.

The elimination scheme looks exactly the same if we were to use Generalized rotations instead of House-
holder reflections. The only difference is that the final orthogonal transformation Q will have detQ = +1,
when rotations are used.

7 Computing with Schur Complements

7.1 Schur Complements

We consider to eliminate the 21-block-entry of matrix by applying a lower triangular matrix from the left
as

[
1 0
−σ 1

]
·
[
A B
C D

]
=

[
A B

C − σA D − σB

]
=

[
A B
0 D − σB

]
.

For the elimination of 21-block-entry B to work, we need to determine the necessary value of the matrix
σ, which works as follows

C − σA = 0 =⇒ σ = CA−1,

Matrix Decompositions 12

as long as A is invertible. This choice for σ successfully eliminates the 21-block-entry and produces the
value of the 22-entry as

D − σB = D − CA−1B,

which is called a Schur Complement.

Looking at the Schur Complement we can see that such an elimination process can be used to compute
numerous elementary matrix operations such as addition and multiplication of matrices, but also the
inversion and matrix-vector multiplications.

7.2 Transfer Function and Schur Complement

Using the formulas above we can see that the linear fractional map representing the transfer function T
of a linear system expressed in terms of a given state-space realization {A,B,C,D}.

[
Z−1x
y

]
=

[
A B
C D

]

︸ ︷︷ ︸
Σ

[
x
u

]
−→

[
0
y

]
=

[
ZA− 1 ZB
C D

] [
x
u

]

after eliminating the state variable x the transfer function T comes as a Schur Complement, that is, we
have

T (Z) = D + C(1− ZA)−1ZB.

7.3 Closed Form of the Inverse

A similar elimination process using an upper-triangular matrix from the right-hand side leads us to
[
A B
0 D − CA−1B

]
·
[

1 −τ
0 1

]
=

[
A B −Aτ
0 D − CA−1B

]
=

[
A 0
0 D − CA−1B

]

B −Aτ =⇒ τ = A−1B

In summary, we can see the factorization of the original matrix into three factors
[
A B
C D

]
=

[
1 0
σ 1

][
A 0
0 D − CA−1B

][
1 τ
0 1

]
.

This factorization can be used to provide a closed form for the inverse

[
A B
C D

]−1

=

[
1 −τ
0 1

][
A−1 0

0 (D − CA−1B)−1

][
1 0
−σ 1

]
=

=

[
A−1 + τ(D − CA−1B)−1σ −τ(D − CA−1B)−1

−(D − CA−1B)−1σ (D − CA−1B)−1

]
=

[
A−1 + τ∆σ −τ∆
−∆σ ∆

]
,

where we have used the short-hand notation ∆ for the inverse of the Schur Complement, that is, we have
used

∆ = (D − CA−1B)−1.

For this to hold we need to have a block-matrix a that is invertible. In case the original matrix is not
invertible then the inverse can be replaced by the Moore-Penrose pseudo-inverse A† for the overall formula
to still hold.

Matrix Decompositions 13

7.4 Computing Determinants

We can use the Schur Complement also to compute the determinant of a block-partitioned matrix by
exploiting the expression

det

[
A B
C D

]
= detA · det (D − CA−1B).

This is a particularily helpful formula of A happens to be a scalar values, as then, the computation of
A−1 is trivial.

7.5 Fadeeva Algorithm

We consider the particular problem of using the Schur Complement computation as a means for solving
a linear system of equation such as

Tu = y.

To this end we can plug in the coefficient matrix T as well as the right-hand side of the equation, that is
y, in the block matrix, which is also called the ’pre-array’. The Schur Complement in the 22 entry of the
post-array then carries the solution vector u according to

[
a b
c d

]
=

[
T y
−1 0

]
=⇒

[
T y
0 u

]
.

Such an elimination approach to actually work for general matrices T we need to also re-shape T to be
upper triangular. This can be achieved if T is first modified by orthogonal transformations in a process
similar to computing the QR decomposition of T , that is we compute

[
Q′

1

][
T y
−1 0

]
=

[
R y′

−1 0

]
,

using the expression T = QR with Q′Q = 1 and Q′y = y′. The effect of the orthogonal matrix Q′ is
accomplished by applying Givens rotations from the left in order to eliminate all lower triangular entries
in T , which will produce the factor R as a remainder. Schematically, we can represent this first phase of
the algorithm as




t t t y
t t t y
t t t y
t t t y
−1 0

−1 0
−1 0




QT

−→




r r r y′

r r y′

r y′

0 y′

−1 0
−1 0

−1 0




.

After this step is completed, the algorithm switches to Gaussian elimination steps to annihilate the
21-block entry and to produce the Schur Complement

[
R Q′y
−1 0

]
=⇒

[
R Q′y
0 R−1Q′y

]
=

[
? ?
0 u

]
.

Matrix Decompositions 14

In more detail this second phase of the algorithm looks like this



r r r y′

r r y′

r y′

0 y′

−1 0
−1 0

−1 0




L−1

−→




r r r y′

r r y′

r y′

0 y′

0 u
0 u

0 u




.

This algorithm is called a Fadeeva algorithm. If T is not invertible this approach will determine the least
squares solution u = T †y, where T † denotes the Moore-Penrose pseudo inverse of T .

The Fadeeva-algorithm is attractive if we have the task to design a hardware solution (e.g. application
specific integrated circuits, parallel processing) dedicated for solving such systems in real-time.

7.6 Modified Fadeeva algorithm

An efficient and computationally attractive approach to solve a system of equations Tu = y, where
T is simply an invertible square matrix of dimension n × n and y a given n-dimensional vector, uses
orthogonal rotations as the sole elimination tool instead of the traditional and hazardous and complex
Gaussian elimination or the inversion of a direct factorization T = QR factorization as T−1 = R−1Q′. It
goes as follows for the system of equations Ty = b. Let us form the ‘pre-array’

[
TT I 0
−yT 0 1

]
=




t t t t 1
t t t t 1
t t t t 1
−y −y −y −y 1




and apply a single QR orthogonal elimination scheme to this pre-array (notice that the rotations only
involve the first n + 1 columns). This results in an orthogonal matrix Q, applied from the left, which
partitions conformably as

[
Q11 q12

q21 q22

]
.

Applying this orthogonal matrix Q to the pre-array amounts to
[
Q11 q12

q21 q22

] [
T ′ I 0
−y′ 0 1

]
=

[
R Q11 q12

q21T
′ − q22y

′ q21 q22

]
=

[
R Q11 q12

0 q21 q22

]
.

Setting the 21-entry in the post-array has been made zero, we obtain the following identities

q21T
′ − q22y

′ = 0 =⇒ q21 = q22y
−1′

= q22u
′,

which produce the post-array to contain the data

−→
[
R Q11 q12

0 q22u
′ q22

]
=




0 r r r q q q q
r r q q q q

r q q q q
0 0 0 0 u′ u′ u′ q22


 .

The post-array obviously contains a scaled version of the solution vector u′ as the 22-entry of the post-
array. The solution vector u′ is multiplied by q22, which is a purely scalar valued scaling factor. The
post-array also carries this factor as its 23-entry.

Matrix Decompositions 15

8 Singular Value Decomposition

This section is adopted from Nicholas Higham’s blog
https://nhigham.com/2020/10/13/what-is-the-singular-value-decomposition.

8.1 What is the Singular Value Decomposition?

A singular value decomposition (SVD) of a matrix T ∈ Rm×n is a factorization

T = U · Σ · V ′, where U ∈ Rm×m and V ∈ Rn×n are orthogonal, (11)

and

Σ =



σ1

. . .

σp


 ∈ Rm×n, with p = min(m,n), and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Partition U = [u1, . . . , um] and V = [v1, . . . , vn]. The σi are called the singular values of A and the ui
and vi are the left and right singular vectors. We have

Tvi = σiui, i = 1, 2 . . . p.

The matrix Σ is unique, but U and V are not. The form of Σ is

Σ =




σ1

. . .

σn

0




for m ≥ n, Σ =



σ1

. . . 0
σm


 for m ≤ n. (12)

Here is an example, in which the entries of A have been specially chosen to give simple forms for the
elements of the factors:

A =




0 4
3

−1 − 5
3

−2 − 2
3


 =

1

3




1 −2 −2
−2 1 −2
−2 −2 1




︸ ︷︷ ︸
U




2
√

2 0

0
√

2
0 0




︸ ︷︷ ︸
Σ

1√
2

[
1 1
1 −1

]

︸ ︷︷ ︸
V ′

. (13)

The power of the SVD is that it reveals a great deal of useful information about norms, rank, and
subspaces of a matrix and it enables many problems to be reduced to a trivial form.

8.2 Four Fundamental Subspaces of a Matrix

Since U and V are nonsingular, rank(T) = rank(Σ) = r, where r ≤ p is the number of nonzero singular
values. Since the 2-norm and Frobenius norm are invariant under orthogonal transformations, ‖T‖ = ‖Σ‖
for both norms, giving

‖T‖2 = σ1, ‖T‖F =
(r∑

i=1

σ2
i

)1/2

, (14)

https://nhigham.com/2020/10/13/what-is-the-singular-value-decomposition

Matrix Decompositions 16

and hence ‖T‖2 ≤ ‖T‖F ≤ r1/2‖T‖2. The range space and null space of T are given in terms of the
columns of U and V by

null(T) = span{vr+1, . . . , vn},
col(T) = span{u1, u2, . . . , ur}

row(T) = span{v1, v2, . . . , vr}
null(T ′) = span{ur+1, ur+2, . . . , un}.

(15)

8.3 Sum of Rank-1 Matrices

We can write the SVD as

T =
[
u1, u2 . . . , ur

]
·



σ1

. . .

σr


 ·




vT1
vT2
...
vTr


 =

r∑

i=1

σiuiv
′
i, (∗), (16)

which expresses T as a sum of r rank-1 matrices, the i-th of which has 2-norm σi.

8.4 Matrix Approximation

The famous Eckart-Young theorem (1936) says that

min
rank(B)=k

‖A−B‖q =




σk+1, q = 2,(∑r

i=k+1 σ
2
i

)1/2

, q = F,
(17)

and that the minimum is attained at

Ak = UDkV
′, Dk = diag(σ1, . . . , σk, 0, . . . , 0). (18)

In other words, truncating the sum (*) after k < r terms gives the best rank-k approximation to A in
both the 2-norm and the Frobenius norm. In particular, this result implies that when A has full rank the
distance from A to the nearest rank-deficient matrix is σr.

8.5 Moore-Penrose Pseudoinverse

The Moore-Penrose Pseudoinverse of a matrix A ∈ Rn×n can be expressed in terms of the SVD as

A+ = V ·




σ−1
1

. . .

σ−1
r

0
. . .

0




· U ′. (19)

The least squares problem minx ‖b − Ax‖2, where A ∈ Rm×n with m ≥ n is solved by x = A+b, and
when A is rank-deficient this is the solution of minimum 2-norm. For m < n this is an underdetermined
system and x = A+b gives the minimum 2-norm solution.

Matrix Decompositions 17

8.6 Polar Decomposition

We can write A = UΣV ′ = UV ′ · V ΣV ′ ≡ PQ, where P is orthogonal and Q is symmetric positive
semidefinite. This decomposition A = PQ is the polar decomposition and Q = (A′A)1/2 is unique. This
connection between the SVD and the polar decomposition is useful both theoretically and computatio-
nally.

8.7 Relations with Symmetric Eigenvalue Problem

The SVD is not directly related to the eigenvalues and eigenvectors ofA. However, form ≥ n, A = UΣV ′

implies

ATA = V



σ2

1

. . .

σ2
n


V ′, AA′ = U




σ2
1

. . .

σ2
n

0
. . .

0




U ′, (20)

so the singular values of A are the square roots of the eigenvalues of the symmetric positive semidefinite
matrices A′A and AA′ (modulo m-n zeros in the latter case), and the singular vectors are eigenvectors.
Moreover, the eigenvalues of the (m+ n)× (m+ n) matrix

C =

[
0 A
A′ 0

]
(21)

are plus and minus the singular values of A, together with |m − n| additional zeros if m 6= n, and the
eigenvectors of C and the singular vectors of A are also related.

Consequently, by applying results or algorithms for the eigensystem of a symmetric matrix to A′A,AA′,
or C one obtains results or algorithms for the singular value decomposition of A.

8.8 History and Computation

The SVD was introduced independently by Beltrami in 1873 and Jordan in 1874. Golub popularized
the SVD as an essential computational tool and developed the first reliable algorithms for computing it.
The Golub-Reinsch algorithm, dating from the late 1960s and based on bi-diagonalization and the QR
algorithm, is the standard way to compute the SVD. Various alternatives are available; see the references.

9 Recursive Matrix Decompositions

9.1 Introduction

At times we want to compute a matrix decomposition of a data matrix A, where the data matrix is
continuously changing by either additional new rows ai or additional new columns being added, that is

Matrix Decompositions 18

we have



A
a1

...

...



−→




A
a1

a2

...


 −→ . . .

For these scenarios we do not intend to preserve and store all data entries of the matrix and to re-compute
the matrix factorization from scratch taking in the newly arrived rows. We’d rather compute recursively
an update of the already known matrix factors. Of course, a similar approach is needed if we remove rows
or columns from the data matrix. This is the essence of this section.

9.2 Recursive Computation of the QR Decomposition

9.2.1 Adding a Row Vector

Let’s assume we have computed the QR decomposition of a given data matrix A ∈ Rm×n as

A = Q ·R, Q′Q = I, R : upper triangular.

Now, we add a new row vector a ∈ R1×n to the matrix A and we want to determine the QR decomposition
of this augmented matrix

[
A
a

]
= Q̂ · R̂.

We want to compute the matrices Q̂, R̂ not from scratch, but by reusing the factors of the QR decompo-
siton of the original matrix Q,R.

[
A
a

]
=

[
Q

1

]
·
[
R
a

]
=

[
Q

1

]
·Q1

︸ ︷︷ ︸
Q̂

·
[
R̂
0

]
, Q1 ∈ R(n+1)×(n+1) (22)

The algorithmic step depicted in the right hand side of Equation 22 implies that we eliminate the elements
of the new row vector a by means of Givens rotations and producing the updated triangular matrix R̂.
Schematically, this looks like

[
R
a

]
=




r r r r r
r r r r

r r r
r r

r
x x x x x




G′16

−→




r̂ r̂ r̂ r̂ r̂
r r r r

r r r
r r

r
0 x x x x




G′26

−→




r̂ r̂ r̂ r̂ r̂
r̂ r̂ r̂ r̂

r r r
r r

r
0 0 x x x



−→

G′36

−→




r̂ r̂ r̂ r̂ r̂
r̂ r̂ r̂ r̂

r̂ r̂ r̂
r r

r
0 0 0 x x




G′46

−→




r̂ r̂ r̂ r̂ r̂
r̂ r̂ r̂ r̂

r̂ r̂ r̂
r̂ r̂

r
0 0 0 0 x




G′56

−→




r̂ r̂ r̂ r̂ r̂
r̂ r̂ r̂ r̂

r̂ r̂ r̂
r̂ r̂

r̂
0 0 0 0 0




=

[
R̂
0

]
,

Matrix Decompositions 19

where Gij denotes the Givens rotation between rows i and j with the purpose to eliminate the matrix

entry j, i. This updating procedure requires only n Givens rotations to produce R̂. Additional operations
are necessary if one computes the update orthogonal matrix Q̂1 by collecting the all the involved Givens
rotation matrices Gij .

9.3 Recursive Computation of the SVD

Let’s assume we have computed the SVD of a given data matrix A ∈ Rm×n as

A = U · Σ · V ′.
Now, we add a new row vector a ∈ R1×n to the matrix A and we want to determine the SVD of this
augmented matrix

[
A
a

]
= Û · Σ̂ · V̂ ′.

We want to compute the matrices Û , Σ̂, V̂ not from scratch, but by reusing the factors of the SVD of the
original matrix U,Σ, V

[
A
a

]
=

[
U

1

]
·
[

Σ
1

]
·
[
V ′

a

]

With the following conventions

x̂ = a · V, a = e+ x̂V ′, σ = ‖e‖, ê =
1

σ
· e

we convert the task into[
A
a

]
=

[
U

1

]
·
[

Σ
x̂ σ

]
·
[
V ′

ê

]
. (23)

The updating now requires us to compute the SVD of
[

Σ
x̂ σ

]
= U ′ · Σ̂ · V ′.

to arrive at[
A
a

]
=

[
U

1

]
· U ′

︸ ︷︷ ︸
Û

·Σ̂ · V ′T
[
V T

ê

]

︸ ︷︷ ︸
V̂ T

Proceeding this way we can compute the SVD of a large matrix by starting with a single row and adding
successively rows while updating the SVD.

9.4 Core Computation

Let’s have a look at how to compute the middle factor in Equation (23), which looks like

[
Σ
x̂ σ

]
=




. . .

. . .

. . .

. ·



.

Matrix Decompositions 20

Converting this bordered matrix into a lower bi-diagonal matrix (upper Hessenberg) form by orthogonal
transformations

U ′T ·
[

Σ
x̂ σ

]
· V ′ =




. . .

. . .
. . .

. . .
. . .

· ·




This lower Hessenberg matrix is not further processed until convergence towards a diagonal form, but it
contains the updated singular values and corresponding matrices U ′ and V ′, which span the subspaces
of interest.

Literatur

[1] I. Gohberg, T. Kailath and I. Koltracht. Linear complexity algorithms for semiseparable matrices.
Integral Equations and Operator Theory, vol. 8, pp. 780-804, Birkhauser Verlag, 1985.

[2] P. Dewilde, A.-J. van der Veen. Time-Varying Systems and Computations. Kluwer, 1989.

[3] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, A.-J. van der Veen, D. White. Fast Stable Solvers for
Sequentially Semi-Separable Linear System of Equations. Lawrence Livermore Nationall Laboratory.
Report UCRL-CR-151499, 2003.

[4] R.Vandebril, M. van Barel, N. Mastonardi. Matrix Computations and Semiseparable Matrices, Vol.1
Linear Systems. Johns Hopkins University Press, 2008.

[5] G. Strang. Computational Science and Engineering. Wellesley-Cambridge Press, 2007.

[6] G. Golub, Ch. van Loan. Matrix Computations. John Hopkins, 1992.

	Introduction
	QR Decomposition
	Basic Factorization Properties
	Using QR decomposition to find least squares solutions

	QR Decomposition using Householder Reflections
	Householder Reflections
	Generalized Rotations
	Elimination Scheme based on Householder Reflections

	QR Decomposition using Givens Rotations
	The Givens elementary elimination strategy
	Givens (Jacobi) Rotation
	Elimination Scheme based on Givens Transformations
	Parallel Processing for Elimination Scheme
	Uniqueness of QR decomposition

	Echelon form
	The QR-family
	Alternative Schemes
	Elimination Scheme for QL factorization

	Computing with Schur Complements
	Schur Complements
	Transfer Function and Schur Complement
	Closed Form of the Inverse
	Computing Determinants
	Fadeeva Algorithm
	Modified Fadeeva algorithm

	Singular Value Decomposition
	What is the Singular Value Decomposition?
	Four fundamental subspaces of a matrix
	Sum of rank-1 matrices
	Matrix Approximation
	Moore-Penrose Pseudoinverse
	Polar Decomposition
	Relations with Symmetric Eigenvalue Problem
	History and Computation

	Recursive matrix decompositions
	Introduction
	Recursive computation of the QR decomposition
	Adding a Row Vector

	Recursive computation of the SVD
	Core Computation

