
Linear Algebra Summary

P. Dewilde K. Diepold

October 26, 2009

Contents

1 Preliminaries 2

1.1 Vector Spaces . 2

1.2 Bases . 4

1.3 Matrices . 5

1.4 Linear maps represented as matrices . 6

1.5 Norms on vectorspaces . 9

1.6 Inner products . 11

1.7 Definite matrices . 12

1.8 Norms for linear maps . 12

1.9 Linear maps on an inner product space . 12

1.10 Unitary (Orthogonal) maps . 13

1.11 Norms for matrices . 13

1.12 Kernels and Ranges . 14

1.13 Orthogonality . 15

1.14 Projections . 15

1.15 Eigenvalues and Eigenspaces . 16

2 Systems of Equations, QR algorithm 17

2.1 Jacobi Transformations . 17

2.2 Householder Reflection . 18

2.3 QR Factorization . 18

2.4 Solving the system Tx = b . 19

2.5 Least squares solutions . 20

2.6 Application: adaptive QR . 21

1

2.7 Recursive (adaptive) computation . 22

2.8 Reverse QR . 24

2.9 Francis’ QR algorithm to compute the Schur eigenvalue form 25

3 The singular value decomposition - SVD 27

3.1 Construction of the SVD . 27

3.2 Singular Value Decomposition: proof . 28

3.3 Properties of the SVD . 28

3.4 SVD and noise: estimation of signal spaces . 31

3.5 Angles between subspaces . 33

3.6 Total Least Square - TLS . 33

1 Preliminaries

In this section we review our basic algebraic concepts and notation, in order to establish a common
vocabulary and harmonize our ways of thinking. For more information on specifics, look up a basic
textbook in linear algebra [1].

1.1 Vector Spaces

A vector space X over R or over C as ’base spaces’ is a set of elements called ’vectors on which
’addition’ is defined with its normal properties (the inverse exists as well as a neutral element called
zero), and on which also ’multiplication with a scalar’ (element of the base space is defined as well,
with a slew of additional properties.

Concrete examples are common:

in R3:




5
−3
1




5

-3

1

x

y

z

in C3:




5 + j
−3− 6j
2 + 2j


 ≈ R6

2

The addition of vectors belonging to the same Cn (Rn) space is defined as:



x1

x2
...

xn


 +




y1

y2
...

yn


 =




x1 + y1

x2 + y2
...

xn + yn




and the scalar multiplication:

a ∈ R or a ∈ C:

a




x
y
z


 =




x
y
z


 a

Example

The most interesting case for our purposes is where a vector is actually a discrete time sequence
{x(k) : k = 1 · · ·N}. The space that surrounds us and in which electromagnetic waves propagate
is mostly linear. Signals reaching an antenna are added to each other.

Composition Rules:

The following (logical) consistency rules must hold as well:

x + y = y + x commutativity
(x + y) + z = x + (y + z) associativity

0 neutral element
x + (−x) = 0 inverse
a(x + y) = ax + ay distributivity of ∗ w.r. +

0 ∗ x = a ∗ 0 = 0
1.x = x

a(bx) = (ab)x



 consistencies

Vector space of functions

Let X be a set and Y a vectorspace and consider the set of functions

X → Y.

We can define a new vectorspace on this set derived from the vectorspace structure of Y:

(f1 + f2)(x) = f1(x) + f2(x)

(af)(x) = af(x).

Examples:

3

+ =

(2)

=+

(1)

f1 f2
f1 + f2

[x1 x2 · · ·xn] + [y1 y2 · · · yn] = [x1 + y1 x2 + y2 · · ·xn + yn]

As already mentioned, most vectors we consider can indeed be interpreted either as continous time
or discrete time signals.

Linear maps

Assume now that both X and Y are vector spaces, then we can give a meaning to the notion ’linear
map’ as one that preserves the structure of vector space:

f(x1 + x2) = f(x1) + f(x2)

f(ax) = af(x)

we say that f defines a ’homomorphism of vector spaces’.

1.2 Bases

We say that a set of vectors {ek} in a vectorspace form a basis, if all its vectors can be expressed
as a unique linear combination of its elements. It turns out that a basis always exists, and that
all the bases of a given vector space have exactly the same number of elements. In Rn or Cn the
natural basis is given by the elements

ek =




0
...
0
1
0
...
0




where the ’1’ is in the kth position.

If

x =




x1

x2
...

xn




4

then
x =

∑

k=1···n
xkek

As further related definitions and properties we mention the notion of span of a set {vk} of vectors
in a vectorspace V: it is the set of linear combinations {x : x =

∑
k αkvk} for some scalars {αk}

- it is a subspace of V. We say that the set {vk} is linearly independent if it forms a basis for its
span.

1.3 Matrices

A matrix (over R or C) is ’a row vector of column vectors over the same vectorspace’

A = [a·1a·2 · · ·a·n]

where

a·k =




a1k
...

amk


 .

and each aik is an element of the base space. We say that such a matrix has dimensions m × n.
(Dually the same matrix can be viewed as a column vector of row matrices.)

Given a m×n matrix A and an n-vector x, then we define the matrix vector-multiplication Ax as
follows:

[a·1 · · · a·n]




x1

x2
...

xn


 = a·1x1 + · · ·+ a·nxn

- the vector x gives the composition recipe on the columns of A to produce the result.

Matrix-matrix multiplication

can now be derived from the matrix-vector multiplication by stacking columns, in a fashion that is
compatible with previous definitions:

[a·1 a·2 · · · a·n]




x1 y1 · · · z1

x2 y2 · · · z2
...

...
...

xn yn · · · zn




= [Ax Ay · · · Az]

where each column is manufactured according to the recipe.

The dual viewpoint works equally well: define row recipes in a dual way. Remarkably, the result is
numerically the same! The product AB can be viewed as ’column recipe B’ acting on the columns
of A, or, alternatively, ’row recipe A’ acting on the rows of B.

5

1.4 Linear maps represented as matrices

Linear maps Cn → Cm are represented by matrix-vector multiplications:

e2

e1

e3

a·2
a·3

a·1

The way it works: map each natural basis vector ek ∈ Cn to a column a·k. The matrix A build
from these columns will map a general x maps to Ax, where A = [a·1 · · · a·n].

The procedure works equally well with more abstract spaces. Suppose that X and Y are such and
a is a linear map between them. Choose bases in each space, then each vector can be represented
by a ’concrete’ vector of coefficients for the given basis, and we are back to the previous case.
In particular, after the choice of bases, a will be represented by a ’concrete’ matrix A mapping
coefficients to coefficients.

Operations on matrices

Important operations on matrices are:

Transpose: [AT]ij = Aji

Hermitian conjugate: [AH]ij = Āji

Addition: [A + B]ij = Aij + Bij

Scalar multiplication: [aA]ij = aAij

Matrix multiplication: [AB]ij =
∑

k AikBkj

Special matrices

We distinguish the following special matrices:

Zero matrix: 0m×n

Unit matrix: In

Working on blocks

Up to now we restricted the elements of matrices to scalars. The matrix calculus works equally
well on more general elements, like matrices themselves, provided multiplication makes sense, e.g.
provided dimensions match (but other cases of multiplication can work equally well).

6

Operators

Operators are linear maps which correspond to square matrices, e.g. a map between Cn and itself
or between an ’abstract’ space X and itself represented by an n× n matrix:

A ∈ Cn → Cn.

An interesting case is a basis transformation:

[e1 e2 · · · en] 7→ [f1 f2 · · · fn]

such that fk = e1s1k + e2s2k + · · · ensnk produces a matrix S for which holds (using ’formal’
multiplication):

[f1 · · · fn] = [e1 · · · en]S

If this is a genuine basistransformation, then there must exist an inverse matrix S−1 s.t.

[e1 · · · en] = [f1 · · · fn]S−1

Basis transformation of an operator

Suppose that a is an abstract operator, η = aξ, while for a concrete representation in a given basis
[e1 · · · en] we have 


y1
...

yn


 = A




x1
...

xn




(abreviated as y = Ax) with

ξ = [e1 · · · en]




x1
...

xn


 , η = [e1 · · · en]




y1
...

yn




then in the new basis:

ξ = [f1 · · · fn]




x ′1
...

x ′n


 , η = [f1 · · · fn]




y ′1
...

y ′n




and consequently 


x ′1
...

x ′n


 = S−1




x1
...

xn







y ′1
...

y ′n


 = S−1




y1
...

yn




y ′ = S−1y = S−1Ax = S−1ASx ′ = A ′x ′

with
A ′ = S−1AS

by definition a similarity transformation.

7

Determinant of a square matrix

The determinant of a real n× n square matrix is the signed volume of the n-dimensional parallel-
lipeped which has as its edges the columns of the matrix. (One has to be a little careful with the
definition of the sign, for complex matrices one must use an extension of the definition - we skip
these details).

a·3

a·2
a·1

The determinant of a matrix has interesting properties:

• detA ∈ R(or C)

• det(S−1AS) = detA

• det




a11 ∗ · · · ∗
0 a22 · · · ∗

. . . ∗
0 ann


 =

∏n
i=1 aii

• det[a·1 · · · a·i · · · a·k · · · a·n] = −det[a·1 · · · a·k · · · a·i · · · a·n]

• detAB = detA · detB

• The matrix A is invertible iff detA 6= 0. We call such a matrix non-singular.

Minors of a square matrix M

For each entry i, j of a square matrix M there is a minor mi,j :

mij = det




* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

ith row

jth column




∗ (−1)i+j

(cross out ith row and jth column, multiply with sign)

This leads to the famous Cramer’s rule for the inverse:
M−1 exists iff detM 6= 0 and then:

M−1 =
1

detM
[mji]

8

(Note change of order of indices!)

Example: [
1 3
2 4

]−1

=
1
−2

[
4 −3
−2 1

]

The characteristic polynomial of a matrix

Let: λ be a variable over C then the characteristic polynomial of a square matrix A is

χA(λ) = det(λIn −A).

Example:

χ
 1 2

3 4



(λ) = det

[
λ− 1 −2
−3 λ− 4

]

= (λ− 1)(λ− 4)− 6
= λ2 − 5λ− 2

The characteristic polynomial is monic, the constant coefficient is (−1)n times the determinant, the
coefficient of the n-1th power of λ is minus the trace - trace(A) =

∑
i aii, the sum of the diagonal

entries of the matrix.

Sylvester identity:
The matrix A satisfies the following remarkable identity:

χA(A) = 0

i.e. An depends linearly on I,A,A2, · · · ,An−1.

Matrices and composition of functions

Let:
f : X → Y, g : Y → Z

then:
g ◦ f : X → Z : (g ◦ f)(x) = g(f(x)).

As we already know, linear maps f and g are represented by matrices F and G after a choice of a
basis. The representation of the composition becomes matrix multiplication:

(g ◦ f)(x) = GFx.

1.5 Norms on vectorspaces

Let X be a linear space. A norm ‖ · ‖ on X is a map ‖ · ‖ : X → R+ which satisfies the following
properties:

a. ‖x‖ ≥ 0

9

b. ‖x‖ = 0 ⇔ x = 0

c. ‖ax‖ = |a| · ‖x‖

d. ‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖
(triangle inequality)

The purpose of the norm is to measure the ’size’ or ’length’ of a vector according to some measuring
rule. There are many norms possible, e.g. in Cn: The ’1’ norm:

‖x‖1 =
n∑

i=1

|xi|

The quadratic norm:

‖x‖2 =

[
n∑

i=1

|xi|2
] 1

2

The ’sup’ norm:
‖x‖∞ = sup

i=1···n
(|xi|)

Not a norm is:

‖x‖ 1
2

=

[
n∑

i=1

|xi|
1
2

]2

(it does not satisfy the triangle inequality).

Unit ball in the different norms: shown is the set {x : ‖x‖? = 1}.

B∞
B2

B1

B1/2

An interesting question is: which norm is the strongest?

The general p-norm has the form:

‖x‖p =
[∑

|xi|p
] 1

p (p ≥ 1)

P-norms satisfy the following important ’Hölder inequality’:
Let p ≥ 1, q = p/(p− 1), then ∣∣∣∣∣

n∑

i=1

xiyi

∣∣∣∣∣ ≤ ‖x‖p‖y‖q

10

1.6 Inner products

Inner products put even more structure on a vector space and allow us to deal with ’orthogonality’
or even more general angles!

Let: X be a vector space (over C).

An inner product is a map X × X → C such that:

a. (y,x) = (x,y)

b. (ax + by, z) = a(x, z) + b(y, z)

c. (x,x) ≥ 0

d. (x,x) = 0 ⇔ x = 0

Hence: ‖x‖ = (x,x)
1
2 is a norm

Question: when is a normed space also an inner product space compatible with the norm?

The answer is known: when the parallelogram rule is satisfied. For real vector spaces this means
that the following equality must hold for all x and y (there is a comparable formula for complex
spaces):

‖x + y‖2 + ‖x− y‖2 = 2
(‖x‖2+ ‖ y ‖2

)

(Exercise: define the appropriate inner product in term of the norm!)

The natural inner product on Cn is given by:

(x,y) =
n∑

i=1

xiȳi = yHx = [ȳ1 · · · ȳn]




x1

x2
...

xn




The ’Gramian’ of a basis:
Let: {fi}i=1···n be a basis for Cn, then the Gramian G is given by:

G = [(fj , fi)]

=




fH
1
...

fH
n


 [f1 · · · fn]

A basis is orthonormal when its Gramian is a unit matrix:

G = In

Hermitian matrix: a matrix A is hermitian if

A = AH

11

1.7 Definite matrices

Definitions: let A be hermitian,

A is positive (semi)definite if
∀x : (Ax,x) ≥ 0

A is strictly positive definite if
∀x 6= 0 : (Ax,x) > 0

The Gramian of a basis is strictly positive definite!

1.8 Norms for linear maps

Let X and Y be normed spaces, and
f : X → Y

a linear map, then

‖f‖ = sup
‖x‖6=0

‖f(x)‖Y

‖x‖X
= sup
‖x‖X=1

‖f(x)‖Y

is a valid norm on the space X → Y. It measures the longest elongation of any vector on the unit
ball of X under f .

1.9 Linear maps on an inner product space

Let
f : X → Y

where X and Y have inproducts (·, ·)X and (·, ·)Y .

The adjoint map f∗ is defined as:

f∗ : Y → X : ∀x∀y[(f∗(y), x)X = (y, f(x))Y]

x f(x)

y

(f∗(y), x) = (y, f(x))

f∗(y)

On matrices which represent an operator in a natural basis there is a simple expression for the
adjoint: if f is y = Ax, and (y, f(x)) = yHAx, then yHAx = (AHy)Hx so that f∗(y) = AHy.
(This also shows quite simply that the adjoint always exist and is unique).

The adjoint map is very much like the original, it is in a sense its ’complex conjugate’, and the
composition with f∗ is a ’square’ or a ’covariance’.

12

We say that a map is self-adjoint if X = Y and f = f∗ and that it is isometric if

∀x : ‖f(x)‖ = ‖x‖
in that case:

f∗f = IX

1.10 Unitary (Orthogonal) maps

A linear map f is unitary if both f and f∗ are isometric:

f∗ ◦ f = IX

and
f ◦ f∗ = IY

In that case X and Y must have the same dimension, they are isomorphic: X ≈ Y.

Example:

• A =

[
1√
2

1√
2

]
is isometric with adjoint

AH = [
1√
2

1√
2
]

• The adjoint of

A =

[
1√
2

1√
2

− 1√
2

1√
2

]

is

AH =

[
1√
2

− 1√
2

1√
2

1√
2

]

Both these maps are isometric and hence A is unitary, it rotates a vector over an angle of −45◦,
while AH is a rotation over +45◦.

1.11 Norms for matrices

We have seen that the measurement of lengths of vectors can be bootstrapped to maps and hence
to matrices. Let A be a matrix.

Definition: the operator norm or Euclidean norm for A is:

‖A‖E = sup
x6=0

‖Ax‖2

‖x‖2

It measures the greatest relative elongation of a vector x subjected to the action of A (in the
natural basis and using the quadratic norm).

Properties:

13

• ‖A‖E = sup‖x‖=1 ‖Ax‖2

• A is isometric if AHA = I, then ‖A‖E = 1, (the converse is not true!).

• Product rule: ‖FG‖E ≤ ‖F‖E‖G‖E .

Contractive matrices: A is contractive if ‖A‖E ≤ 1.

Positive real matrices: A is positive real if it is square and if

∀x : ((A + AH)x,x) ≥ 0.

This property is abbreviated to: A + AH ≥ 0. We say that a matrix is strictly positive real if
xH(A + AH)x > 0 for all x 6= 0.

If A is contractive, then I−AHA ≥ 0.

Cayley transform: if A is positive real, then S = (A− I)(A + I)−1 is contractive.

Frobenius norm

The Frobenius norm is the quadratic norm of a matrix viewed as a vector, after rows and columns
have been stacked:

‖A‖F =




n,m∑

i,j=1

|ai,j |2



1
2

Properties:

• ‖A‖2
F = trace AHA = trace AAH

• ‖A‖2 ≤ ‖A‖F , the Frobenius norm is in a sense ’stronger’ than the Euclidean.

1.12 Kernels and Ranges

Let A be a matrix X → Y.

Definitions:

• Kernel of A: K(A) = {x : Ax = 0} ⊂ X
• Range of A: R(A) = {y : (∃x ∈ X : y = Ax)} ⊂ Y
• Kernel of AH (cokernel of A): {y : AHy = 0} ⊂ Y
• Range of AH (corange of A): {x : (∃y : x = AHy)} ⊂ X

14

K(A)

R(AH)

R(A)

K(AH)

1.13 Orthogonality

All vectors and subspaces now live in a large innerprod (Euclidean) space.

• vectors: x ⊥ y ⇔ (x,y) = 0

• spaces: X ⊥ Y ⇔ (∀x ∈ X)(∀y ∈ Y) : (x,y) = 0

• direct sum: Z = X⊕Y ⇔ (X ⊥ Y)&(X ,YspanZ), i.e. (∀z ∈ Z)(∃x ∈ X)(∃y ∈ Y) : z = x+y
(in fact, x and y are unique).

Example w.r. kernels and ranges of a map A : X → Y:

X = K(A)⊕R(AH)

Y = K(AH)⊕R(A)

1.14 Projections

Let X be an Euclidean space.

• P : X → Y is a projection if P2 = P.

• a projection P is an orthogonal projection if in addition:

∀x ∈ X : Px ⊥ (I−P)x

• Property: P is an orthogonal projection if (1) P2 = P and (2) P = PH .

Application: projection on the column range of a matrix.
Let

A = [a·1 a·2 · · · a·m]

such that the columns are linearly independent. Then AHA is non-singular and

P = A(AHA)−1AH

is the orthogonal projection on the column range of A.

Proof (sketch):

15

• check: P2 = P

• check: PH = P

• check: P project each column of A onto itself.

1.15 Eigenvalues and Eigenspaces

Let A be a square n× n matrix. Then λ ∈ C is an eigenvalue of A and x an eigenvector, if

Ax = λx.

The eigenvalues are the roots of the characteristic polynomial det(zI−A).

Schur’s eigenvalue theorem: for any n × n square matrix A there exists an uppertriangular
matrix

S =




s11 · · · s1n

. . .
...

0 snn




and a unitary matrix U such that
A = USUH .

The diagonal entries of S are the eigenvalues of A (including multiplicities). Schur’s eigenvalue
theorem is easy to prove by recursive computation of a single eigenvalue and deflation of the space.

Ill conditioning of multiple or clusters of eigenvalues

Look e.g. at a ’companion matrix’:

A =




0 −p0

1
. . .

...
. . . 0

...
0 1 −pn−1




its characteristic polynomial is:

χA(z) = zn + pn−1z
n−1 + · · ·+ p0.

Assume now that p(z) = (z − a)n and assume a permutation pε(z) = (z − a)n − ε. The new roots
of the polonymial and hence the new eigenvalues of A are:

a + ε
1
n ejπk/n

Hence: an ε error in the data produces ε
1
n in the result (take e.g. n = 10 and ε = 10−5, then the

error is ≈ 1!)

16

2 Systems of Equations, QR algorithm

Let be given: an n×m matrix T and an n-vector b.
Asked: an m-vector x such that:

Tx = b

Distinguish the following cases:





n > m overdetermined
n = m square
n < m underdetermined

For ease of discussion we shall look

only at the case n ≥ m.

The general strategy for solution is an orthogonal transformations on rows. Let a and b be two rows
in a matrix, then we can generate linear combinations of these rows by applying a transformation
matrix to the left (row recipe):

[
t11 t12

t21 t22

] [←− a −→
←− b −→

]
=

[
t11a + t12b
t21a + t22b

]

or embedded:



1
1

t11 t12

1
t21 t22

1







←− · −→
←− · −→
←− a −→
←− · −→
←− b −→
←− · −→




=




←− · −→
←− · −→
t11a + t12b
←− · −→
t21a + t22b
←− · −→




2.1 Jacobi Transformations

The Jacobi elementary transformation is:
[

cosφ − sinφ
sinφ cosφ

]

It represents an elementary rotation over an angle φ:

φ

A Jacobi transformation can be used to annihilate an element in a row (with c
.= cosφ and s

.= sin φ):
[

c −s
s c

] [
a1 a2 · · · am

b1 b2 · · · bm

]
=

[
ca1 − sb1 ca2 − sb2 · · ·
sa1 + cb1 sa2 + cb2 · · ·

]

17

.=
[√

|a1|2 + |b1|2 ? · · · ?
0 ? · · · ?

]

when sa1 + cb1 = 0 or

tanφ = − b1

a1

which can always be done.

2.2 Householder Reflection

We consider the Householder matrix H, which is defined as

H = I− 2Pu, Pu = u(uTu)−1uT ,

i.e. the matrix Pu is a projection matrix, which projects along the direction of the vector u. The
Householder matrix H satisfies the orthogonality property HTH = I and has the property that
detH = −1, which indicates that H is a reflection which reverses orientation (Hu = −u). We
search for an orthogonal transformation H which transforms a given vector x onto a given vector
y = Hx, where ‖x‖ = ‖y‖ holds. We compute the vector u specifying the projection direction for
Pu as u = y − x.

2.3 QR Factorization

2.3.1 Elimination Scheme based on Jacobi Transformations

A cascade of unitary transformations is still a unitary transformation: let Qij be a transformation
on rows i and j which annihilates an appropriate element (as indicated further in the example).
Successive eliminations on a 4×3 matrix (in which the · indicates a relevant element of the matrix):




· · ·
· · ·
· · ·
· · ·


 (Q12) 7→




? ? ?
0 ? ?
· · ·
· · ·


 (Q13) 7→




? ? ?
0 · ·
0 ? ?
· · ·


 (Q14)

7→




? ? ?
0 · ·
0 · ·
0 ? ?


 (Q23) 7→




· · ·
0 ? ?
0 0 ?
0 · ·


 (Q24) 7→




· · ·
0 ? ?
0 0 ·
0 0 ?


 (Q34)

7→




· · ·
0 · ·
0 0 ?
0 0 0




(The elements that have changed during the last transformation are denoted by a ’?’. There are
no fill-ins, a purposeful zero does not get modified lateron.) The end result is:

Q34Q24Q23Q14Q13Q12T =
[

R
0

]

in which R is upper triangular.

18

2.3.2 Elimination Scheme based on Householder Reflections

A cascade of unitary transformations is still a unitary transformation: let bHi be a transformation
on the rows i until and n which annihilates all appropriate elements in rows i + 1 : n (as indicated
further in the example).

x =




x1

x2
...

xn


 , y =




√
xTx
0
...
0




Successive eliminations on a 4×3 matrix (in which the · indicates a relevant element of the matrix):



· · ·
· · ·
· · ·
· · ·


 (H14) 7→




? ? ?
0 · ·
0 · ·
0 · ·


 (H24) 7→




? ? ?
0 ? ?
0 0 ·
0 0 ·


 (H34) 7→




? ? ?
0 ? ?
0 0 ?
0 0 0




(The elements that have changed during the last transformation are denoted by a ’?’. There are
no fill-ins, a purposeful zero does not get modified lateron.) The end result is:

H34H24H14T =
[

R
0

]

in which R is upper triangular.

2.4 Solving the system Tx = b

Let also:
Q34 · · ·Q12b

.= β

then Tx = b transforms to:



r11 r12 r13

0 r22 r23

0 0 r33

0 0 0







x1

x2

x3


 =




β1

β2

β3

β4




.

The solution, if it exists, can now easily be analyzed:

1. R is non-singular (r11 6= 0, · · · , rmm 6= 0), then the partial set

Rx =




β1

β2

β3




can be solved for x by backsubstitution:

x =




r11 r12 r13

0 r22 r23

0 0 r33



−1 


β1

β2

β3


 =




· · ·
r−1
22 (β22 − r23r

−1
33 β3)

r−1
33 β3




19

(there are better methods, see further!), and:
1. if β4 6= 0 we have a contradiction,
2. if β4 = 0 we have found the unique solution.

2. etcetera when R is singular (one or more of the diagonal entries will be zero yielding more
possibilities for contradictions).

2.5 Least squares solutions

But... there is more, even when β4 6= 0:

x = R−1




β1

β2

β3




provides for a ’least squares fit’ it gives the linear combination of columns of T closest to b i.e. it
minimizes

‖Tx− b‖2.

Geometric interpretation: let
T = [t·1 t·2 · · · t·m]

then one may wonder whether b can be written as a linear combination of t·1 etc.?
Answer: only if b ∈ span{t·1, t·2, · · · , t·m}!

t·1

t·n

b

b̂
t·2

Otherwise: find the ’least squares fit’, the combination of t·1 etc. which is closest to b, i.e. the
projection of b̂ of b on the span of the columns.

Finding the solution: a QR-transformation rotates all the vectors t·i and b over the same angles,
with as result:

r·1 ∈ span{e1},
r·2 ∈ span{e1, e2}

etc., leaving all angles and distances equal. We see that the projection of the vector β on the span
of the columns of R is actually 



β1

β2

β3

0




20

Hence the combination of columns that produces the least squares fit is:

x = R−1




β1

β2

β3




Formal proof

Let Q be a unitary transformation such that

T = Q
[

R
0

]

in which R is upper triangular.

Then: QHQ = QQH = I and the approximation error becomes, with QHb =
[

β ′

β ′ ′

]
:

‖Tx− b‖2
2 = ‖QH(Tx− b)‖2

2 = ‖
[

R
0

]
x− β‖2

2 = ‖Rx− β ′‖2
2 + ‖β ′ ′‖2

2

If R is invertible a minimum is obtained for Rx = β ′ and the minimum is ‖β ′ ′‖2.

2.6 Application: adaptive QR

The classical adaptive filter:

....

....

xk1 xk2 xk3 xkm

wk1 wk2 wkm

+ + +

x·m

yk

ek dk
Adaptor

wk3
....

....

At each instant of time k, a data vector x(k) = [xk1 · · ·xkm] of dimension m comes in (e.g. from
an antenna array or a delay line). We wish to estimate, at each point in time, a signal yk as
y(k) =

∑
i wkixki - a linear combination of the incoming data. Assume that we dispose of a

’learning phase’ in which the exact value dk for yk is known, so that the error ek = yk − dk is
known also - it is due to inaccuracies and undesired signals that have been added in and which we
call ’noise’.

The problem is to find the optimal wki. We choose as optimality criterion: given the data from
t = 1 to t = k, find the wki for which the total error is minimal if the new weigths wki had indeed

21

been used at all available time points 1 ≤ i ≤ k (many variations of the optimization strategy are
possible).

For i ≤ k, let yki =
∑

` xi`wi` be the output one would have obtained if wki had been used at that
time and let

Xk =




x11 x12 · · · x1m

x21 x22 · · · x2m
...

...
...

...
xk1 xk2 · · · xkm




be the ’data matrix’ contained all the data collected in the period 1 · · · k. We wish a least squares
solution of

Xkwk· = yk· ≈ d[1:k]

If

Xk = Qk

[
Rk

0

]
, d[1:k] = Qk

[
δk1

δk2

]

is a QR-factorization of Xk with conformal partitioning of d and Rk upper-triangular, and assuming
Rk non-singular, we find as solution to our least squares problem:

wk· = R−1
k δk1

and for the total error: √√√√
k∑

i=1

[eki]2 = ‖δk2‖2

Note: the QR-factorization will be done directly on the data matrix, no covariance is computed.
This is the correct numerical way of doing things.

2.7 Recursive (adaptive) computation

Suppose you know Rk−1, δk−1, how to find Rk, δk with a minimum number of computations?

We have:

Xk =
[

Xk−1

xk1 · · · xkm

]
, d[1:k] =

[
d[1:k−1]

dk

]
,

and let us consider [
Qk−1 0

0 1

]

as the first candidate for Qk.

Then [
QH

k−1 0
0 1

] [
Xk−1

xk·

]
=




Rk−1

0
xk·




and [
QH

k−1 0
0 1

] [
d[1:k−1]

dk

]
=

[
δk−1,·

dk

]

22

Hence we do not need Qk−1 anymore, the new system to be solved after the previous transformations
becomes: 


Rk−1

0
xk·







wk1
...

wkm


 =

[
δk−1,·

dk

]
,

i.e. 


? ? · · · ?
0 ? · · · ?

. . .
...

0 · · · · · · ?

0
xk1 xk2 · · · xkm







wk1
...

wkm


 =

[
δk−1,·

dk

]
,

only m row transformations are needed to the find the new Rk, δk:

* * * * *
* * * *

*

0

* * * *

*
*

*

*

*

*

* * * * *
* * * *

*

0

*
*

*

*

*

*
0 0 0 0

new values

same

new error contribution

Question: how to do this computationally?

A dataflow graph in which each rij is resident in a separate node would look as follows:

23

xk1 xk2 xk3 xkm dk 1

r11 r12 r13 r1m δk−1,1

r22 r23 r2m δk−1,2

r33 r3m δk − 1, 3

rmm δk−1,m

φ1 φ1 φ1 φ1φ1 φ1

φ2 φ2 φ2 φ2 φ2

φ3 φ3 φ3 φ3

φm φm

c1

c1c2

Φi

*

δkk

+
dk

yk

Initially, before step 1, rij = 1 if i = j otherwise zero. Just before step k the rk−1
ij are resident in

the nodes. There are two types of nodes:

r

x

φ vectorizing node: computes the angle φ from x and r

φ

x

rotating node: rotates the vector
[

r
x

]
over φ.

The scheme produces Rk, δkk and the new error:

‖ek‖2 =
√
‖ek−1‖2

2 + |δkk|2

2.8 Reverse QR

In many applications, not the update of Rk is desired, but of wk = R−1
k δk,1:m. A clever manipula-

tion of matrices, most likely due to E. Deprettere and inspired by the old Faddeev algorithm gives
a nice solution.

Observation 1: let R be an m×m invertible matrix and u an m-vector, then

[
R u
0 1

]−1

=
[

R−1 −R−1u
0 1

]
,

hence, R−1u is implicit in the inverse shown.

Observation 2: let QH be a unitary update which performs the following transformation (for some

24

new, given vector x and value d):

QH




R u
0 1
x d


 .=




R ′ u ′δ
0 δ
0 0




(Qis thus almost like before, the embedding is slightly different - δ is a normalizing scalar which
we must discount).

Let us call R .=
[

R u
0 1

]
, similarly for R ′, and ξH = [x d], then we have

QH

[R 0
ξH 1

]
=

[R ′ qH
21

0 qH
22

] 


I
δ

1




Taking inverses we find (for some a12 and a22 which originate in the process):

[R−1 0
−ξHR−1 1

]
Q

.=




I
δ−1

1




[R ′−1 a12

0 a22

]
.

Hence, an RQ-factorization of the known matrix on the left hand side yields an update of R−1,
exclusively using new data. A data flow scheme very much like the previous one can be used.

2.9 Francis’ QR algorithm to compute the Schur eigenvalue form

A primitive version of an iterative QR algorithm to compute the Schur eigenvalue form goes as fol-
lows. Suppose that the square n×n matrix A is given. First we look for a similarity transformation
with unitary matrices U ·UH which puts A in a so called ’Hessenberg form’, i.e. uppertriangular
with only one additional subdiagonal, for a 4× 4 matrix:




? ? ? ?
? ? ? ?
0 ? ? ?
0 0 ? ?


 ,

(the purpose of this step is to simplify the following procedure, it also allows refinements that
enhance convergence - we skip its details except for to say that it is always possible in (n−1)(n−2)/2
Jacobi steps).

Assume thus that A is already in Hessenberg form, and we set A0
.= A. A first QR factorization

gives:
A0

.= Q0R0

and we set A1
.= R0Q0. This procedure is then repeated a number of times until Ak is nearly

upper triangular (this does indeed happen sometimes - see the discussion further).

The iterative step goes as follows: assume Ak−1
.= Qk−1Rk−1, then

Ak
.= Rk−1Qk−1.

25

Let’s analyze what we have done. A slight rewrite gives:

Q0R0 = A
Q0Q1R1 = AQ0

Q0Q1Q2R2 = AQ0Q1

· · ·

This can be seen as a fixed point algorithm on the equation:

UΣ = AU

with U0
.= I, we find successively:

U1Σ1 = A
U2Σ2 = AU1

· · ·
the algorithm detailed above produces in fact Uk

.= Q0 · · ·Qk. If the algorithm converges, after a
while we shall find that Uk ≈ Uk+1 and the ’fixed point’ is more or less reached.

Convergence of a fixed point algorithm is by no means assured, and even so, it is just linear. Hence,
the algorithm must be improved. This is done by using at each step a clever constant diagonal
’offset’ of the matrix. We refer to the literature for further information [2], where it is also shown
that the improved version has quadratic convergence. Given the fact that a general matrix may
have complex eigenvalues, we can already see that in that case the simple version given above
cannot converge, and a complex version will have to be used, based on a well-choosen complex
offset. It is interesting to see that the method is related to the classical ’power method’ to compute
eigenvalues of a matrix. For example, if we indicate by [·]1 the first column of a matrix, the previous
recursion gives, with

Qn
.= Q0Q1 · · ·Qn

and λn+1
.= [Rn+1]11,

λn+1[Qn+1]1 = A[Qn]1.

Hence, if there is an eigenvalue which is much larger in magnitude than the others, [Qn+1]1 will
converge to the corresponding eigenvector.

QZ-iterations

A further extension of the previous concerns the computation of eigenvalues of the (non singular)
pencil

A− λB

where we assume that B is invertible. The eigenvalues are actually values for λ and the eigenvectors
are vectors x such that (A − λB)x = 0. This actually amounts to computing the eigenvalues of
AB−1, but the algorithm will do so without inverting B. In a similar vein as before, we may assume
that A is in Hessenberg form and B is upper triangular. The QZ iteration will determine unitary
matrices Q and Z such that A1

.= QAZ and B1
.= QBZ, whereby A1 is again Hessenberg, B1

upper triangular and A1 is actually closer to diagonal. After a number of steps Ak will almost be
triangular, and the eigenvalues of the pencil will be the ratios of the diagonal elements of Ak and
Bk. We can find the eigenvectors as well if we keep track of the transformation, just as before.

26

3 The singular value decomposition - SVD

3.1 Construction of the SVD

The all important ’singular value decomposition’ or SVD results from a study of the geometry of
a linear transformation.

Let A be a matrix of dimensions n×m, for definiteness assume n ≥ m (a ’tall’ matrix). Consider
the length of the vector Ax, ‖Ax‖ =

√
xHAHAx, for ‖x‖ = 1.

When A is non singular it can easily be seen that Ax moves on an ellipsoid when x moves on the
unit ball. Indeed, we then have x = A−1y and the locus is given by yHA−HA−1y = 1, which is a
bounded quadratic form in the entries of y. In general, the locus will be bounded by an ellipsoid,
but the proof is more elaborate.

The ellipsoid has a longest elongation, by definition the operator norm for A: σ1 = ‖A‖. Assume
σ1 6= 0 (otherwise A ≡ 0), and take v1 ∈ Cm a unit vector producing a longest elongation, so that
Av1 = σ1u1 for some unit vector u1 ∈ Cn. It is now not too hard to show that:

Av1 = σ1u1

AHu1 = σ1v1,

and that v1 is an eigenvector of AHA with eigenvalue σ2
1.

Proof: by construction we have Av1 = σ1u1 maximum elongation. Take any w ⊥ v1 and look at the effect
of A on (v1 + λw)/

√
1 + |λ|2. For very small λ the latter is ≈ (v1 + λw)(1 − 1

2 |λ|2) ≈ v1 + λw, and
A(v1 +λw) = σ1u1 +λAw. The norm square becomes: vH

1 AHAv1 +λvH
1 AHAw+ λ̄wHAHAv1 +O(|λ|2)

which can only be a maximum if for all w ⊥ v1, wHAHAv1 = 0. It follows that AHu1 must be in the
direction of v1, easily evaluated as AHu1 = σ1v1, that σ2

1 is an eigenvalue of AHA with eigenvector v1 and
that w ⊥ v1 ⇔ Aw ⊥ Av1.

The problem can now be deflated one unit of dimension. Consider the orthogonal complement of
Cm ª span{v1} - it is a space of dimension m − 1, and consider the original map defined by A
but now restricted to this subspace. Again, it is a linear map, and it turns out that the image is
orthogonal on span(u1).

Let u2 be the unit vector in that domain for which the longest elongation σ2 is obtained (clearly
σ1 ≥ σ2), and again we obtain (after some more proof) that

Av2 = σ2u2

AHu2 = σ2v2

27

(unless of course σ2 = 0 and the map is henceforth zero! We already know that v2 ⊥ v1 and
u2 ⊥ u1.)

The decomposition continues until an orthonormal basis for R(AH) as span(v1,v2 · · ·vk) (assume
the rank of A to be k) is obtained, as well as a basis for R(A) as span(u1,u2 · · ·uk).

These spaces can be augmented with orthonormal bases for the kernels: vk+1 · · ·vm for K(A) and
uk+1 · · ·un for K(AH). Stacking all these results produces:

A[v1 v2 · · ·vk vk+1 · · ·vm] = [u1 u2 · · ·uk uk+1 · · ·un]
[

Σ 0
0 0

]

where Σ is the k × k diagonal matrix of singular values:

Σ =




σ1

σ2

. . .
σk




and σ1 ≥ σ2 ≥ · · · ≥ σk > 0. Alternatively:

A = U
[

Σ 0
0 0

]
VH

where:
U = [u1 u2 · · ·uk uk+1 · · ·un],V = [v1 v2 · · ·vk vk+1 · · ·vm]

are unitary matrices.

3.2 Singular Value Decomposition: proof

The canonical svd form can more easily (but with less insight) be obtained directly from an eigen-
value decomposition of the Hermitean matrix AHA (we skip the proof: exercise!). From the form
it is easy to see that

AHA = V
[

Σ2 0
0 0

]
VH

and

AAH = U
[

Σ2 0
0 0

]
UH

are eigenvalue decompositions of the respective (quadratic) matrices.

The σi’s are called singular values, and the corresponding vectors ui,vi are called pairs of singular
vectors or Schmidt-pairs. They correspond to principal axes of appropriate ellipsoids. The collection
of singular values is ’canonical’ (i.e. unique), when there are multiple singular values then there
are many choices possible.

3.3 Properties of the SVD

Since the SVD is absolutely fundamental to the geometry of a linear transformation, it has a long
list of important properties.

28

• ‖A‖E = σ1, ‖A‖F =
√∑

i=1···k σ2
i .

• If A is square and A−1 exists, then ‖A−1‖E = σ−1
k .

• Matrix approximation: suppose you wish to approximate A by a matrix B of rank at most
`. Consider:

B = [u1 · · ·u`]




σ1

. . .
σ`


 [v1 · · ·v`]

H .

Then
‖A−B‖E = σ`+1

and

‖A−B‖F =
√ ∑

i=`+1···k
σ2

i .

One shows that these are the smallest possible errors when B is varied over the matrices of
rank `. Moreover, the B that minimizes the Frobenius norm is unique.

• System conditioning: let A be a non-singular square n × n matrix, and consider the system
of equations Ax = b. The condition number C gives an upper bound on ‖δx‖2/‖x‖2 when
A and b are subjected to variations δA and δb. We have:

(A + δA)(x + δx) = (b + δb)

Assume the variations small enough (say O(ε)) so that A + δA is invertible, we find:

Ax + δA x + A δx ≈ b + δb + O(ε2)

and since Ax = b,
δx ≈ A−1δb−A−1 δA x.

Hence (using the operator or ‖ · ‖2 norm):

‖δx‖ ≤ ‖A−1‖‖δb‖+ ‖A−1‖‖δA‖‖x‖
≤ ‖A−1‖‖Ax‖

‖b‖ ‖δb‖+ ‖A−1‖‖A‖‖δA‖‖A‖ ‖x‖
and finally, since ‖Ax‖ ≤ ‖A‖‖x‖,

‖δx‖
‖x‖ ≤ ‖A−1‖‖A‖

{‖δb‖
‖b‖ +

‖δA‖
‖A‖

}
.

Hence the condition number C = ‖A−1‖‖A‖ = σ1
σn

.

A note on the strictness of the bounds: C is in the true sense an ’attainable worst case’. To attain
the bound, e.g. when ‖δb‖ = 0, one must choose x so that ‖Ax‖ = ‖A‖‖x‖ (which is the case for
the first singular vector v1), and δA so that ‖A−1δA x‖ = ‖A−1‖‖δA‖‖x‖ which will be the case if
‖δA x‖ is in the direction of the smallest singular vector of A, with an appropriate choice for ‖δA‖
so that ‖δA x‖ = ‖δA‖‖x‖. Since all this is possible, the bounds are attainable. However, it is highly
unlikely that they will be attained in practical situations. Therefore, signal processing engineers prefer
statistical estimates which give a better rendering of the situation, see further.

Example: given a large number K in A =
[

1 K
0 1

]
, then σ1 ≈ K and σ2 ≈ K−1 so that

C ≈ K2.

29

• Generalized inverses and pseudo-inverses: let’s restrict the representation for A to its non-zero
singular vectors, assuming its rank to be k:

A = [u1 · · ·uk]




σ1

. . .
σk


 [v1 · · ·vk]

H =
k∑

i=1

σiuivH
i

(the latter being a sum of ’outer’ products of vectors).

The Moore-Penrose pseudo-inverse of A is given by:

A+ = [v1 · · ·vk]




σ−1
1

. . .
σ−1

k


 [u1 · · ·uk]

H .

Its corange is the range of A and its range, the corange of A. Moreover, it satisfies the
following properties:

1. AA+A = A

2. A+AA+ = A+

3. A+A is the orthonormal projection on the corange of A

4. AA+ is the orthonormal projection on the range of A.

These properties characterize A+. Any matrix B which satisfies (1) and (2) may be called
a pseudo-inverse, but B is not unique with these properties except when A is square non-
singular.

From the theory we see that the solution of the least squares problem

min
x∈Cn

‖Ax− b‖2

is given by
x = A+b.

The QR algorithm gives a way to compute x, at least when the columns of A are linearly indepen-
dent, but the latter expression is more generally valid, and since there exist algorithms to compute
the SVD in a remarkably stable numerically way, it is also numerically better, however at the cost
of higher complexity (the problem with QR is the back substitution.)

30

3.4 SVD and noise: estimation of signal spaces

Let X be a measured data matrix, consisting of an unknown signal S plus noise N as follows:

X = S + N


x11 x12 · · · x1m

x21 x22 · · · x2m
...
...




=




s11 s12 · · · s1m

s21 s22 · · · s2m
...
...




+




N11 N12 · · · N1m

N21 N22 · · · N2m
...
...




What is a good estimate of S given X? The answer is: only partial information (certain subspaces
...) can be well estimated. This can be seen as follows:

Properties of noise: law of large numbers (weak version)

Let

ν =
1
n

n∑

i=1

Ni

for some stationary white noise, stationary process {Ni} with E(NiNj) = σ2
Nδij .

The variance is:
σ2

ν = E(1
n

∑
Ni)2

= 1
n2

∑
i,j E(NiNj)

= σ2
N
n

and hence
σν =

σN√
n

,

the accuracy improves with
√

n through averaging. More generally, we have:
1
n
NHN = σ2

N (I + O(
1√
n

))

(this result is a little harder to establish because of the different statistics involved, see textbooks
on probability theory.)

Assume now S and N independent, and take a large number of samples. Then:
1
nXHX = 1

n(SH + NH)(S + N)
= 1

n(SHS + NHN + NHS + SHN)

(in the long direction), and suppose that si, i = 1,m are the singular values of S, then 1
nXHX

equals 



VS




s2
1
n

. . .
s2
m
n


VH

S +




σ2
N

. . .
σ2

N







·
{
I + O(

1√
n

)
}

.

A numerical error analysis of the SVD gives: SVD(A + O(ε)) = SVD(A) + O(ε), and hence:

1
n
XHX = VS




s2
1
n + σ2

N
. . .

s2
m
n + σ2

N


VH

S + O(
1√
n

).

31

Pisarenko discrimination

Suppose that the original system is of rank `, and we set the singular values of X out against their
order, then we’ll find:

Number

* * * *

*

* * * * *

1 2 3 4 5 · · · ` + 1 · · ·

Singular value of 1
n

XHX

si/
√

n
σ2

N

We may conclude the following:

1. there is a bias σ2
N on the estimates of s2

i
n

2. the error on these estimates and on VS is O(σN√
n
).

hence it benefits from the statistical averaging. This is however not true for US - the signal subspace
- which can only be estimated OσN , since no averaging takes place in its estimate.

32

3.5 Angles between subspaces

Let
U = [u1 u2 · · ·uk]

V = [v1 v2 · · ·v`]

isometric matrices whose columns form bases for two spaces HU and HV . What are the angles
between these spaces?

The answer is given by the SVD of an appropriate matrix, UHV. Let

UHV = A




σ1

. . .
σk

0

0 0


BH

be that (complete) SVD - in which A and B are unitary. The angle cosines are then given by
cosφi = σi and the principal vectors are given by UA and VB (cosφi is the angle between the ith
column of UA and VB). These are called the principal vectors of the intersection.

3.6 Total Least Square - TLS

Going back to our overdetermined system of equations:

Ax = b,

we have been looking for solutions of the least squares problem: an x such that ‖Ax − b‖2 is
minimal. If the columns of A are linearly independent, then A has a left inverse (the pseudo-
inverse defined earlier), the solution is unique, and is given by that x for which b̂ .= Ax is the
orthogonal projection of b on space spanned by the columns of A.

33

An alternative, sometimes preferable approach, is to find a modified system of equations

Âx = b̂

which is as close as possible to the original, and such that b̂ is actually in R(Â) - the span of the
columns of Â.

What are Â and b̂? If the original A has m columns, then the second condition forces rank[Â b̂] =
m, and [Â b̂] has to be a rank m approximant to the augmented matrix [A b]. The minimal
approximation in Frobenius norm is found by the SVD, now of [A b]. Let:

[A b] = [a·1 · · ·a·m b]

= [u·1 · · ·u·m u·m+1]




σ1

. . .
σm

σm+1


 [v·1 · · ·v·mv·m+1]H

be the desired SVD, then we define

[Â b̂] = [â·1 · · · â·m b̂]

= [u·1 · · ·u·m]




σ1

. . .
σm


 [v·1 · · ·v·m]H .

What is the value of this approximation? We know from the previous theory that the choice is such
that ‖[A− Â b− b̂]‖F is minimal over all possible approximants of reduced rank m. This means
actually that

m∑

i=1

‖a·i − â·i‖2
2 + ‖b− b̂‖2

2

is minimal, by definition of the Frobenius norm, and this can be interpreted as follows:

The span(a·i,b) defines a hyperplane, such that the projections of a·i and b on it are given by â·i,
b̂ and the total quadratic projection error is minimal.

Acknowledgement

Thanks to many contributions from Patrick Dewilde who initiated to project to create such a
summary of basic mathematical prelimenaries.

References

[1] G. Strang, Linear Algebra and its Applications, Academic Press, New York, 1976.

[2] G.H. Golub and Ch.F. Van Loan, Matrix Computations, The John Hopkins University Press,
Baltimore, Maryland, 1983.

34

