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1 Introduction

Fourier Transformation is one of the most essential algorithmic tools if it comes to representing and
processing signals. In this context we only consider time-discrete signals. Therefore, we focus on the
Discrete Fourier Transformaton and its fast computational version, the Fast Fourier Transformation.

We start out with the process of computing the convolution product of two signals, which is usually
encountered when determining the output signal of a discrete-time linear and time-invariant system as
a response to a given input signal or sequence. Computing this convolution will lead us to the use of
Toeplitz matrices for formulating the convolution as a matrix vector product.

A further step will bring us to the notion of the cyclic convolution and the corresponding cyclic Toeplitz
matrix. The analysis of the eigenvalue decomposition of the cyclic Toeplitz matrix then will give rise to
the Discrete Fourier Transformation (DFT). The Fast Fourier Transformation (FFT) is then an efficient
way to compute the DFT by exploiting the structure inherent to the DFT matrix.

This write-up contains two major learnings:

1. The existence of the DFT is bound to the existence of a cyclic Toepltz matrix, such that the DFT
represents the eigenvalue decomposition of the Toeplitz matrix.

2. The use of the DFT for computing output signals of linear discrete-time systems is limited to the
family of time-invariant systems. Otherwise the cyclic Toeplitz matrix wouldn’t appear.

∗P. Dewilde, K. Diepold, A.-J. v.d. Veen. Time-Variant ans Quasi-separable Systems, Cambridge University Press, 2024
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2 Linear Dynamical Systems

2.1 Standard Representation

We can use the equivalence between Linear Systems on the one hand and Linear Algebra on the other
hand if we want to represent such systems or if we are computing with input and output signals of linear
systems. In Figure 1 depicts a symbolic representation for an system, that takes input sequence [uk] and
produces the output sequence [yk], which is determined as the transfer operator T {·} applied to the input
sequence.

T {·}[uk] [yk]

Figure 1: Input Output description of a linear time-invariant system.

Once we are dealing with linear systems, the sequences [uk] and [yk] are mapped into vectors u and y of
length m and n,

[uk] 7→ u =




...
uk−1
uk
uk+1

...



, [yk] 7→ y =




...
yk−1
yk
yk+1

...



,

respectively.

In digital signal processing and digital communications we are often interested in computing the output
sequence [yk] of a linear time-invariant system, which is given in terms of the function T {·}, and which
we have excited with an input sequence [uk]. As shown in Figure 1, considering such a system, we observe
that feeding the sequence [uk] to the input of the system causes the output sequence [yk], which is denoted
as

[yk] = T {[uk]},
where [uk] = . . . uk−1, uk, uk+1 . . . , [yk] = . . . yk−1, yk, yk+1 . . . and k = 1, 2, . . . representing the time
index for elements of the discrete-time sequence.

2.2 Linearity

We assume the systems to be linear such that we require that the superposition principle holds, that is,
for two input sequences [uk]1 and [uk]2 the corresponding output sequences add like

[yk]1 = T {[uk]1}, [yk]2 = T {[uk]2} ⇒ [yk]1 + [yk]2 = T {[uk]1 + [uk]2}.
A consequence of the superposition principle reads as

α · [yk] = T {α · [uk]},
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where α is a scalar factor.

2.3 Time Invariance

The property of time-invariance states that the function T {·} in invariant to shifts along the time axis,
i.e. shifting the input sequence [uk] by τ causes a corresponding shift in the output sequence [yk]

[yk−τ ] = T {[uk−τ ]},

without causing further changes in [yk].

3 Exploiting Linearity and Time-Invariance

We can exploit the features of linearity and time-invariance to compute the output signal [yk] of the
system. We show an example in Figure 2. We take an input sequence [uk] of length m = 4, and decompose
it into the sum of individual impulses ui, which are shifted in time. Each of these individual impulses
generates a shifted version of the impulse response [tk] of length n = 4. Each of these shifted versions of the
impulse response is weighted with the value of the corresponding input impulse ui creating the individual
impulse responses [yk]i, i = 1, 2, 3, 4. Here we exploit the time-variance property of the LTI-system such
that the shifted versions of the impulse response are derived from the identical impulse response [tk].
Finally, the output signal [yk] is generated as the sum of the individually weighted and shifted impulse
responses. For this step we exploit the linearity property of the LTI-system (superposition principle).

Putting all this together we can observe that the LTI-system determines the output sequence [yk] as

[yk] =

∞∑

i=−∞
[tk−i] · ui, k = 0, 1, . . .m+ n− 2,

which is called a linear convolution.

3.1 Input/Output representation using z-Transform

A popular tool for dealing with discrete time signals and systems is based on using the z-transformation
of a time-series tk, which is defined as

T (z) =

∞∑

k=−∞
tkz

k. (1)

The symbol z denotes a complex variable which turns a sequence of numbers tk into a complex-valued func-
tion T (z). Please note that here we use a positive exponent for z in our definition of the z-transformation.
This is a minor modification in comparison to most standard engineering text books. However, in the
mathematical literature the positive exponent is more prevailing and therefore we will use this notation.

As a simple example consider the z-transforms of the sequences [t0, t1, t2, t3] and [u0, u1, u2, u3] computed
as

T (z) = t0 + t1z + t2z
2 + t3z

3, U(z) = u0 + u1z + u2z
2 + u3z

3. (2)
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[uk]

[tk]

[yk]

u1 u2 u3u0

[yk]1 [yk]2 [yk]3[yk]0

[yk]0 = u0 · [tk] [yk]1 = u1 · [tk−1] [yk]2 = u2 · [tk−2] [yk]3 = u3 · [tk−3]

[yk] =
3�

i=0

ui · [tk−i]

Figure 2: Computing the output signal of an LTI system with convolutions. The first row denotes the
decomposition of an input sequence [uk] into the sum of individual impulses ui, which are shifted in time.
Each of the individual impulses generates a shifted version of the impulse response, which weighted with
the value of the corresponding impulse ui. These impulse responses are shown in the second row. Finally,
the output signal [yk] is generated as the sum of the individually weighted and shifted impulse responses.
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We denote the the z-transform of the input sequence by U(z) and the z-transform of the impulse re-
sponse of the system by T (z). The z-transform of the output signal Y (z) is computed by multiplying the
corresponding z-transforms

Y (z) = T (z) · U(z). (3)

For the current example this amounts to computing the values yk in the z-transform

Y (z) = y0 + y1z + y2z
2 + y3z

3 + y4z
4 + y5z

5 + y6z
6, (4)

from which we can read off the output sequence [y0, y1, y2, y3, y4, y5, y6]. The values of the z-transform of
Y (z) are computed as the convolution of the coefficient vectors for U(z) and T (z).

Y (z) = (t0u0) + (t1u0 + t0u1)z + (t2u0 + t1u1 + t0u2)z2 + (t3u0 + t2u1 + t1u2 + t0u3)z3 + . . .

· · ·+ (t3u1 + t2u2 + t1u3)z4 + (t3u2 + t2u3)z5 + (t3u3)z6

After all, the z-transform is a nice tool for calculating convolutions by hand if it is restricted to relatively
short sequences and short filters, as otherwise the manual work will be overwhelming. We still need an
efficient method for computing the convolution of two finite sequences.

4 Linear Convolution

The output sequence [yk] is determined by the convolution operation. We now discuss the computational
task to compute the convolution of two signals in an efficient way. Let’s consider a finite, discrete-time
sequence [uk], k = 0, 1, 2, . . .m − 1 of length m. We feed this sequence as the input to a (discrete-time)
linear, time-invariant system that is described by its associated impulse response [tk], k = 1, 2, . . . n−1 of
length n. For now we restrict the discussion to finite time series to keep things simple. We can compute
the output sequence [yk] of the linear system as the linear convolution of the two sequences [tk] and [uk],
denoted by

[yk] = [tk] ? [uk] =

m−1∑

i=0

[tk−i] · ui, k = 0, 1, . . .m+ n− 2.

with an input sequence [uk] of length m and an impulse response [tk] of length n, then the length of the
output signal is N = m+ n− 1.

As an example, we manually convolve an input signal [uk] of length m = 4 with an impulse response [tk]
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of length n = 4 to produce an output signal [yk] of length N = m+ n− 1 = 7,

0 0 0 u0 u1 u2 u3 0 0 0

t3 t2 t1 t0
y0 u0t0

t3 t2 t1 t0
y1 u0t1 +u1t0

t3 t2 t1 t0
y2 u0t2 +u1t1 +u0t2

t3 t2 t1 t0
y3 u0t3 +u1t2 +u2t1 +u3t0

t3 t2 t1 t0
y4 u1t3 +u2t2 +u3t1

t3 t2 t1 t0
y5 u2t3 +u3t2

t3 t2 t1 t0
y6 u3t3

4.1 Linear Convolution as Matrix-Vector Operation

We can use the elements of the input sequence [uk] to form the m-dimensional vector, and the entries of
the output sequence [yk] can also be summarized in a corresponding output vector

u =




u0
u1

um−1


 , u ∈ Rm, t =




t0
t1
...

tn−1


 , t ∈ Rn, y =




y0
y1
...

ym+n−2


 , y ∈ Rm+n−1.

We convert the impuls response vector t into a matrix T of dimension (m+ n− 1)× n. For an example
with n = 4 this looks like

t =




t0
t1
...
t3


 7→ T =




t0
t1 t0
t2 t1 t0
t3 t2 t1 t0

t3 t2 t1
t3 t2

t3




.

Using these vectors and the matrix we can replace the tedious convolution sum operation, with a matrix-
vector multiplication y = T · u, e.g. for m = 4 and n = 4 we have




y0
y1
y2
y3
y4
y5
y6




=




t0
t1 t0
t2 t1 t0
t3 t2 t1 t0

t3 t2 t1
t3 t2

t3




︸ ︷︷ ︸
T

·




u0
u1
u2
u3


 . (5)
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Note that shifted versions of the impulse-response constitute the columns of the matrix T , which results in
having identical entries along diagonals. The matrix T with this specific structure is a finite dimensional
representation of a more general convolution operator and is called a Toeplitz matrix after the German
mathematician Otto Toeplitz.

The current Toeplitz matrix is a rectangular matrix, which is not invertible. We also cannot determine its
eigenvalues and eigenvectors. Furthermore, in order to enable efficient algorithms for computing convolu-
tions we complete the matrix appropriately. We explain the details in the next section. The computation
of the convolution is represented as a matrix-vector product, which requires (m+n−1)·m = m2+mn−m
operations, which amounts for an asymptotic complexity of O(m2) operations. We are interested in re-
ducing the complexity as the Toeplitz structure of T provides opportunities for optimization.

4.2 Cyclic Convolution and Cyclic Toeplitz Matrix

Let’s have a look at a particular class of matrices, which are closely related to the Toeplitz matrix of the
previous section. This class is referred to as Circulant Matrices or Cyclic Toeplitz Matrices. Using the
entries of the impulse response we can build a representative Tc of this family, e.g.

Tc =




t0 t3 t2 t1
t1 t0 t3 t2
t2 t1 t0 t3
t3 t2 t1 t0


 .

The reader will immediately recognize the cyclic property of this matrix. With this cyclic Toeplitz matrix
we can compute the Cyclic Convolution of the signals [tk] and [uk] as

[yk] = [tk]⊗ [uk], y = Tcu.

The elements of the output sequence come out as

y =




t0u0 + t3u1 + t2u2 + t3u1
t1u0 + t0u1 + t1u2 + t2u1
t2u0 + t1u1 + t0u2 + t3u1
t3u0 + t2u1 + t1u2 + t0u1


 ,

which clearly differs substantially from the result of the linear convolution. Using a cyclic Toeplitz matrix,
we still would like to compute the linear convolution of [tk] and [uk]. To achieve this, we build a cyclic
Toeplitz matrix with an impulse response vectors [tk], which we pad by the necessary number of zeroes
such that Tc becomes a (m + n − 1) × (m+ n− 1)-matrix. We need to also pad the input vector u
appropriately with additional zeros, such that the additional columns in Tc do not modify the output
vector y. We still denote the zero-padded input vector as u. With this recipe we can calculate the linear
convolution correctly using actually a cyclic convolution y = Tc · u as




y0
y1
y2
y3
y4
y5
y6




=




t0 t3 t2 t1
t1 t0 t3 t2
t2 t1 t0 t3
t3 t2 t1 t0

t3 t2 t1 t0
t3 t2 t1 t0

t3 t2 t1 t0




·




u0
u1
u2
u3
0
0
0




. (6)
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The cyclic extension of the Toeplitz matrix is in close relation with the known effects of periodic replication
of the signal and its Fourier spectrum when processing signals, which have been sampled in the time
domain and the frequency domain.

So why do we jump through all these hoops to make a simple operation like a linear convolution seemingly
more complicated by turning it into a cyclic convolution involving zero-padded vectors and matrices? I
will explain this in the next section. Bear in mind, that after all we are seeking efficiency in computation
and hence we are looking for ways to reduce computations.

5 Fourier Transformation and Frequency Domain

5.1 Similarity Transformation

Since we have now established the cyclic Toeplitz matrix and its use for computing the linear convolution
we want to exploit the property that Tc is a square matrix. This allows us to do further analysis of the
properties of this family of matrices.

If we multiply both sides of the equation y = Tcu from the left with a non-singular matrix Q, we arrive
at

Q · y = Q · Tc · u. (7)

As a next step we insert the identity matrix 1n = Q−1Q between the factors Tc and u on the right hand
side of Equation (7). This leads us to

Q · y = Qc ·Q−1 ·Q · u. (8)

Inserting a few brackets for improved readability we get

(Q · y) = (Q · Tc ·Q−1) · (Q · u), (9)

where we can read off the following abbreviated notation

Y = Λ · U, (10)

where the quantities Y,Λ and U are defined as

Y := Q · y, U := Q · u, Λ := Q · Tc ·Q−1. (11)

The identity

Λ := Q · Tc ·Q−1 (12)

can easily be identified as a similarity transformation of Tc by Q. The similarity transformation implies
that the matrices Tc and Λ share the same eigenvalues. If the matrix Q where the eigenvectors of Tc, the
Λ would turn out to be a diagonal matrix with the eigenvalues of Tc on its main diagonal (of course only
of Tc is diagonalizable). So, we are interested to determine the eigenvalues and eigenvectors of the Cyclic
Toeplitz matrix.
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5.2 Eigenvalue Decomposition of Cyclic Toeplitz Matrices

The specific structure of the cyclic Toeplitz matrix is also called a Circulant. We want to determine
a eigenvalue decomposition for a cyclic Toeplitz matrix, i.e. we want to compute eigenvectors x and
eigenvalues λ (solutions to Tcx = λx) for a cyclic Toeplitz matrix, given as

Tc =




t0 tN−1 tN−2 . . . t1
t1 t0 tN−1 . . . t2
t2 t1 t0 . . . t3
...

...
...

. . .
...

tN−1 tN−2 tN−3 . . . t0



. (13)

Let q denote a root of the scalar equation qN = 1, where we for now can take N = m+ n− 1 and set

x =
[
q0 q1 q2 . . . qN−1

]′
.

We then compute

z = Tc · x =
[
z0 z1 z2 . . . zN−1

]′
.

Looking at the first entry of the resulting vector z determined as

z0 = t0 + tN−1q
1 + tN−2q

2 + · · ·+ t1q
N−1

we observe that z0 satisfies the following system of equations

z0 = t0 + tN−1q
1 + tN−2q

2 + · · ·+ t1q
N−1

z1 = z0q
1 = t1 + t0q

1 + tN−1q
2 + · · ·+ t2q

N−1

...
...

zN−1 = z0q
N−1 = tN−1 + tN−2q

1 + tN−3q
2 + · · ·+ t0q

N−1,

which we can summarize compactly as

z0 · x = Tc · x.

It follows from this that λ = z0 is a characteristic root (eigenvalue) of Tc with the associated characteristic
vector (eigenvector) x. Since the equation qN = 1 has N distinct roots λi, i = 0, 2, . . . N − 1, we see that
we obtain N distinct characteristic vectors xi, i = 0, 1, 2, . . . N − 1. The value q = ej2π/N is a solution to
the equation qN = 1. Consequently, we have the complete set of characteristic roots and vectors in this
way, i.e.

Tc · xi = λi · xi

holds. The set of all eigenvectors xi can be put together as the columns of a matrix

Q =
[
x0, x1, x2, . . . , xN−1

]
=




1 1 1 . . . 1
1 q q2 . . . qN−1

1 q2 q4 . . . q2(N−1)

...
...

...
...

1 qN−1 . . . q(N−1)
2



.
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With this special choice for the matrix Q the Equation (12) represents the Eigenvalue Decomposition of
Tc with

Λ = Q−1 · Tc ·Q =




λ0 0
λ1

. . .

0 λN−1


 . (14)

That is, Λ contains the eigenvalues of Tc as its diagonal entries and the matrix Q contains the correspon-
ding eigenvectors. That implies that for computing the Eigenvalue decomposition of the cyclic Toeplitz
matrix Tc we already have the corresponding eigenvectors given a priori as the columns of the matrix Q.
With those quantities given, computing the pertaining eigenvalues is an easy task.

5.3 Discrete Fourier Transformation

Let us have a closer look at the matrix Q, which is composed of the characteristic vectors xi, i =
1, 2, . . . N − 1,

Q =
1√
N
·




1 1 1 . . . 1
1 q q2 . . . qN−1

1 q2 q4 . . . q2(N−1)

...
...

...
...

1 qN−1 . . . q(N−1)
2



, (15)

which we have now conveniently normalized by a factor 1/
√
N to arrive at a matrix Q having a number

of special properties, such as

• Unitarity: QHQ = 1N ⇒ QH = Q−1

• Permutation: Q2 = P = P ′

• Cyclic: Q3 = QH , Q4 = 1N .

This matrix Q is identified as the matrix of the D iscrete Fourier Transform (DFT) for sequences of length
N . That means that the eigenvalue decomposition of the cyclic Toeplitz matrix Tc corresponds with the
Discrete Fourier Transform. With view to equation 12 we can identify that the eigenvalues of Tc collected
in the matrix Λ represent actually the Fourier spectrum of the (zero-padded) sequence [tk]. (Note that
the zero-padding is not an essential part of this process). We can identify the matrix Q to represent the
Discrete Fourier Transform, such that the Fourier spectrum of the sequences [uk] and [tk] are determined
by

diag {Λ} = Q · t↔ DFT{[tk]}, U = Q · u↔ DFT{[uk]}, Y = Q · y ↔ DFT{[yk]}. (16)

The convolution theorem associated with the Fourier Transformation appears in the form

[yk] = DFT−1{DFT{[tk]} · DFT{[uk]}} = [tk] ? [uk] (17)

then becomes Y = Λ · U or more explicitely



Y0
Y1
...

YN−1


 =




λ0 0
λ1

. . .

0 λN−1


 ·




U0

U1

...
UN−1


 . (18)
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This just says that the convolution of sequences in the time domain corresponds to the multiplication of the
corresponding spectra in the frequency (Fourier) domain. As engineers we have learned to appreciate this
powerful statement. However, when looking at the complexity of computing the convolution of sequences
using Fourier techniques, we can identify that computing the Fourier spectra for the sequences [uk] and
[tk] comes as a matrix vector multiplication and hence requires O(N2) operations (N = m + n − 1).
The multiplication of the Fourier spectra takes O(N) operations and the back transformation of the
resulting spectrum into the time domain is again an O(N2) operation. So, after all these considerations
and derivations we have now established the frequency domain, but we it still takes too much operations
to calculate a linear convolution.

But there is a way to continue. The previously derived identities are the basis on which the technique of
Fast Convolution is based on. For real and efficient computations of the DFT we use an fast algorithm,
called the Fast Fourier Transform or FFT. The FFT computes the eigenvalues of the cyclic Toeplitz
matrix Tc using O(N logN) arithmetic operations, which is much more efficient than a straight matrix-
vector multiplication. The FFT exploits special properties of the matrix Q in combination with a clever
devide-and-conquer approach to matrix multiplication. But that thing, we will discuss in the next section.

6 The Fast Fourier Transform

The Fast Fourier Transform (FFT) is a collection of computationally efficient methods to compute the
DFT of order N , assuming that N is a product of smaller integers N = r · s. If r and s are themselves
products of even smaller numbers then this process can be further exploited recursively. Often N will be
a power of 2, e.g. N = 2n or even N = 4n and the resulting scheme will become especially efficient, but
the case where r and s are primes is in itself also interesting. It is this numerical efficiency that has made
the FFT a method of choice for a number of tasty signal processing problems such as convolution, non
parametric spectral estimation, autocorrelation and the solution of certain types of structured matrix
equations.

The original discovery of the FFT is due to Tuckey and Cooley [3] in 1965, but meanwhile many con-
tributions have been made detailing algorithmic improvements and use in various circumstances, various
books have been written about it and a lot of experience has been obtained since it has become the
obvious method of choice to execute Fourier Transforms concretely.

There is a particularly attractive way to introduce the FFT just by looking at symmetries in the DFT
matrix. This is the way we shall follow. We take the smallest possible non trivial example: N = 12 = 3 ·4,
and show how FFT-12 is reduced to a number of FFT-3’s and FFT-4’s. The method we follow will be
perfectly general and the reader will immediately understand how the method can be generalized to the
N = r ∗ s case.

6.1 Matrix of Powers in q−1

Embarking on the N = 12 = 3 · 4 case we have the DFT-Matrix (see also [?])

Q12 =
1√
12
·




1 1 1 . . . 1
1 q q2 . . . q11

1 q2 q4 . . . q22

...
...

...
...

1 q11 . . . q121



,
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Exploiting the cyclic property of the powers of q12 = 1 the matrix entries can be simplified to

Q12 =
1√
12
·




1 1 1 . . . 1
1 q q2 . . . q11

1 q2 q4 . . . q10

...
...

...
...

1 q11 q10 . . . q1



.

Instead of writing out the Q12 completely in matrix form, we write all the powers that appear in the Q12

matrix, also in a 12 × 12 matrix form. This matrix shows the symmetries that we shall exploit in the
algorithm nicely

Q12 =
1√
12
q̂.




0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11
0 2 4 6 8 10 0 2 4 6 8 10
0 3 6 9 0 3 6 9 0 3 6 9
0 4 8 0 4 8 0 4 8 0 4 8
0 5 10 3 8 1 6 11 4 9 2 7
0 6 0 6 0 6 0 6 0 6 0 6
0 7 1 8 2 9 3 10 4 11 5 0
0 8 4 0 8 4 0 8 4 0 8 4
0 9 6 3 0 9 6 3 0 9 6 3
0 10 8 6 4 2 0 10 8 6 4 2
0 11 10 9 8 7 6 5 4 3 2 1




(19)

In this write up of Q12 we have used the same notation as in the previous chapter, namely q = 22πj/12,
and a MATLAB-like notation for point wise exponentiation (̂.) of matrix elements. We use the fact that
the exponents of q may be restricted to the range 0 . . . 11 by applying a ’mod 12’ calculation. Various
symmetries jump into view in the matrix of exponents. The issue is how to exploit these symmetries for
efficient computations.

Our goal is the construction of a computational schema for the DFT, i.e. the computation of the Discrete
Fourier Spectrum of the input sequence [uk], which is captured in the the vector u. This computation
amounts to perform the matrix-vector product

U = Q12 · u,

in which U and u are vectors of dimension N = 12. The main effect of the mentioned symmetries is that
in this matrix-vector product the same sums appear many times. A color schema of repetitions in the
matrix of exponents is shown in Figure 3.

For example, u0+u4+u8 appears in rows 0, 3, 6 and 9 (zero exponent), just as well as the sum u1+u5+u9,
except that in the latter case the sum is additionally multiplied with a changing factor in rows 3, 6 and
9. The best way to deal with this is to reorder the matrix so as to bring potential symmetries together.

6.2 Column permutations bringing sums together

We perform a column permutation on Q12. The permutation is simply: 0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11
(i.e. row 0 remains, row 4 becomes row 1 etc.). Writing Π4 for the corresponding permutation matrix we
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Figure 3: Schematic Procedure for FFT.
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obtain for the resulting schema

Q12Π4 = q̂.




0 0 0 0 0 0 0 0 0 0 0 0
0 4 8 1 5 9 2 6 10 3 7 11
0 8 4 2 10 6 4 0 8 6 2 10
0 0 0 3 3 3 6 6 6 9 9 9
0 4 8 4 8 0 8 0 4 0 4 8
0 8 4 5 1 9 10 6 2 3 11 7
0 0 0 6 6 6 0 0 0 6 6 6
0 4 8 7 11 3 2 6 10 9 1 5
0 8 4 8 4 0 4 0 8 0 8 0
0 0 0 9 9 9 6 6 6 3 3 3
0 4 8 10 2 6 8 0 4 6 10 2
0 8 4 11 7 3 10 6 2 9 5 1




.

A subdivision in 3Times3 blocks shows the pre-eminence in the first three columns of the block

Q3 = q̂.




0 0 0
0 4 8
0 8 4


 = q4 .̂




0 0 0
0 1 2
0 2 1


 ,

which we identify easily as the FFT 3 block, since e2π4/12 = e2π/3. Look at the second block of three
columns, e.g.




3 3 3
4 8 0
5 1 9


 =




3
4

5


 ?




0 0 0
0 4 8
0 4 8


 ,

in which the matrix multiplication |star has a special interpretation due to the exponential representation
used. The reader will figure out the mystery

Let us now post multiply the matrix obtained so far with the inverse of a block-diagonal matrix consisting

of four Q3 blocks, and let us call the block matrix D
[4]
3

D
[4]
3 =




Q3

Q3

Q3

Q3


 .

Taking the observation made so far into account we now obtain

Q12Π4(D
[4]
3 )−1 = q̂.




0 0 0 0
0 1 2 3

0 2 4 6
0 3 6 9

0 4 8 0
0 5 10 3

0 6 0 6
0 7 2 9

0 8 4 0
0 9 6 6

0 10 8 6
0 11 10 9



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in which the empty entries are zero. Again, an observation as at the start of our operations imposes itself
on us, and we reorder the columns, this time by the column permutation 0,3,6,9,1,4,7,10,2,5,8,11, which
we call Π3

Q12Π4(D
[4]
3 )−1Π3 = q̂.




0 0 0 0
0 1 2 3

0 2 4 6
0 3 6 9

0 4 8 0
0 5 10 3

0 6 0 6
0 7 2 9

0 8 4 0
0 9 6 3

0 10 8 6
0 11 10 9




Again we use the convention that empty entries are actually zero. This time a new phenomenon appears,
similar operations have to be done as before, but now regrouping on the rows and block multiplication on
the left. Let us first observe that column five equals column 1 multiplied with q, column six is column two
multiplied with q2 etc. These factors are the so called twiddle factors. Let us define the block diagonal
matrix

W = q̂.




1
1

1
1

1
q

q2

q3

1
q2

q4

q6




and let us regroup the rows by permutation. What is the permutation matrix that we should apply now?
Let us first determine Π4, which permutes the columns in the order 0,4,8,1 etc. Applying the rules of
matrix multiplication we obtain easily

Π4 =




1
1

1
1

1
1

1
1

1
1

1
1



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Looking carefully at this matrix we see that when applied to the left of a matrix it will exchange the rows
of the latter in the order 0,3,6,9,1 etc. Hence this is the matrix we are looking for to regroup the rows.
A little more exploration shows that in fact Π4Π3 = Π3Π4 , hence Π3 = Π−14 - a fact that we shall use
soon. Applying now W to the right of the result so far and Π4 to the left we find

Π4Q12Π4(D
[4]
3 )−1Π3W = q̂.




0 0 0 0
0 3 6 9
0 6 0 6
0 9 6 3

0 0 0 0
0 3 6 9
0 6 0 6
0 9 6 3

0 0 0 0
0 3 6 9
0 6 0 6
0 9 6 3




a result that we recognize as D
[4]
3 - three diagonal blocks of Q4. Hence, using Π−14 = Π3 as well as vice

versa and inverting the necessary matrices we find

Q12 = Π3D
[3]
4 W−1Π4D

[4]
3 Π3.

6.3 The resulting computational schema

In the previous section Q12 has been reduced to three permutations, four Q3’s, three Q4’s and a number
of twiddle factors (six if we do not count multiplications by 1, but of those six, two more are also trivial
because they reduce to multiplications by either -1 or j). How does this translate to a signal flow graph?
To see that, we just imagine that we multiply Q12 with an arbitrary signal vector u to the right. The
first operation on u just permutes the entries, next four Q3 blocks come into play etc. This produces the
schema depicted in Figure 4.

6.4 Computational Complexity

The complexity count takes into account that multiplications with a 1, -1, j or -j do not count (nor do
sign changes count because they can be incorporated in the summations), and that

Q4 =




1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j




hence results in no multiplications, but 12 additions (for each row 3). Each Q3 has 4 complex multiplica-
tions and 6 additions, while multiplication with the twiddle factors result in four complex multiplications.
The overall count is then for the FFT 20 multiplications and 60 additions. Already in this instance the
count is much in favor of the FFT as compared to the DFT (whose count we leave to the reader).
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!
Figure 4: Signal Flow Graph for Computing the FFT. Twiddle Factors colored are colored in annotated
with their respective coefficient of q.
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6.4.1 Generalization

The theory so far generalizes easily to the product N = r ·s and two (dual) schemas will be obtained, one
for r · s and one for s · r. Using the notation developed in this chapter and adapted to the new situation
we can write

Qr·s = ΠrD
[r]
s W

−1ΠsD
[s]
r Πr,

where some attention has to be devoted to the structure of the twiddle factor matrix. It will consist of r
diagonal blocks of dimension s

W = diag {W0,W1, . . . ,Wr−1}

with

Wj = diag {1, qj , . . . , qs−1},

in particular W0 is a unit matrix and the maximum power of q is (r − 1)(s− 1).

7 Computing in the Fourier Domain

The convolution operation costs O(N2) operations, if N is the length of the signals we are working
on. Alternatively, exploiting the convolution theorem of the Discrete Fourier Transformation we can
compute the output signal of a linear time-invariant system in the frequency domain. The Discrete Fourier
Transformation of a given signal can be computed very efficient way by the Fast Fourier Transform (FFT).
This leads to the so-called Fast Convolution method, which requires O(N logN) operations.

This denotes a significant saving in computations when comparing the Fast Convolution with the direct
execution of the convolution sum. Figure 5 shows the detour through frequency domain for computing
the convolution.

This frequency domain method using the FFT works very well, is well established and it’s efficiency
can be regarded as one of the major cornerstones for the tremendous success of digital signal processing
during the past 30 years. However, it is based on the assumption that the systems involved are linear and
time-invariant. If one of these two assumptions is violated, then the use of frequency domain tools is no
longer possible.

If the system is time-varying, then the impulse response changes with time. That implies that the columns
in the convolution operator T are not shifter versions of the impulse response [tk] and hence the operator
looses its Toeplitz property. Also, the cyclic Toeplitz matrix does not exhibit the particular structure
anymore, which is the cornerstone for the matrix Q to consist of the eigenvectors of Tc and hence the
convolution theorem of the Discrete Fourier Transform does not hold anymore.

Successfully and efficiently computing in the Fourier domain is also fitting only if the impulse responses
[tk] describing the input-output behavior of the system has finite length. In signal processing applications
engineers use recursive filters, which have a finite number of parameters, but which produce an impulse
response of infinite length.
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Figure 5: Schematic Procedure for Computing Fast Convolutions.
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